• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农林核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
刘忠,章政,楼旭阳,等. 基于NSSAE的批次发酵过程质量相关与质量无关故障检测与诊断[J]. 食品工业科技,2025,46(3):1−12. doi: 10.13386/j.issn1002-0306.2024020300.
引用本文: 刘忠,章政,楼旭阳,等. 基于NSSAE的批次发酵过程质量相关与质量无关故障检测与诊断[J]. 食品工业科技,2025,46(3):1−12. doi: 10.13386/j.issn1002-0306.2024020300.
LIU Zhong, ZHANG Zheng, LOU Xuyang, et al. Quality-related and Quality-irrelevant Fault Detection and Diagnosis in Batch Fermentation Process based on NSSAE[J]. Science and Technology of Food Industry, 2025, 46(3): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020300.
Citation: LIU Zhong, ZHANG Zheng, LOU Xuyang, et al. Quality-related and Quality-irrelevant Fault Detection and Diagnosis in Batch Fermentation Process based on NSSAE[J]. Science and Technology of Food Industry, 2025, 46(3): 1−12. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020300.

基于NSSAE的批次发酵过程质量相关与质量无关故障检测与诊断

Quality-related and Quality-irrelevant Fault Detection and Diagnosis in Batch Fermentation Process based on NSSAE

  • 摘要: 为了解决批次发酵过程中质量无关故障所可能引起的不必要停机,本文提出了噪声半监督堆叠自编码器(Noised semi-supervised stacked auto-encoder,NSSAE)算法以区分质量相关与质量无关故障。首先,基于互信息计算过程变量与质量变量间互信息,并对数据加入噪声以提高算法对质量相关信息挖掘能力。其次,构建NSSAE的过程监测模型,在模型的首层自编码器和最后一层自编码器中构建故障检测和质量相关检测指标,并利用核密度估计计算对应的控制极限。最后,利用深度重构贡献图(Deep reconstruction-based contribution,DRBC)定位故障根源。从数值仿真和乳酸菌批次发酵实验结果可知,本文提出的NSSAE算法能够准确区分质量相关与无关故障,首层的残差空间的检测指标的故障检测率接近100%,最后一层隐空间的检测指标能够准确识别质量相关故障和质量无关故障。基于DRBC诊断方法能在故障发生后准确识别发生故障的变量,该研究结果为批次发酵过程质量相关与质量无关故障监测问题提出了一种切实可行的过程监测方法。

     

    Abstract: To address potential unnecessary shutdowns caused by quality-unrelated faults during batch fermentation processes, the paper proposes a noise semi-supervised stacked auto-encoder (NSSAE) to differentiate the quality-relevant and the quality-irrelevant faults. First, mutual information is applied to calculate the contribution from the process variables to quality variables, where artificial noised is introduced to enhance the performance. Second, an NSSAE-based monitoring model is established, wherein indicators for faults and quality variations are separately constructed from the first layer and the last layer of the model. Upon which, kernel density estimation is used to calculate the thresholds for the indicators. Lastly, perform the deep reconstruction-based contribution analysis to locate the root cause. Based on the results of numerical simulations and lactic acid bacteria batch fermentation experiments, the NSSAE algorithm proposed in this paper demonstrates the ability to accurately distinguish between quality-related and quality-irrelevant faults. The fault detection rate using the detection index of the first layer of residual space approaches 100%. Moreover, the detection index in the final layer of latent space can precisely identify both quality-related and quality-irrelevant faults. Utilizing the DRBC diagnostic method, the specific variable causing the fault can be accurately pinpointed post-fault occurrence. These findings suggest a practical and effective process monitoring method for addressing quality-related and quality-irrelevant fault monitoring issues in the batch fermentation process.

     

/

返回文章
返回