• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农林核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
张全通,郑尧,杨柳,等. 计算机视觉结合卷积神经网络快速检测南极磷虾粉中的虾青素含量[J]. 食品工业科技,2025,46(3):1−9. doi: 10.13386/j.issn1002-0306.2024030200.
引用本文: 张全通,郑尧,杨柳,等. 计算机视觉结合卷积神经网络快速检测南极磷虾粉中的虾青素含量[J]. 食品工业科技,2025,46(3):1−9. doi: 10.13386/j.issn1002-0306.2024030200.
ZHANG Quantong, ZHENG Yao, YANG Liu, et al. Rapid Detection of Astaxanthin in Antarctic Krill Meal by Computer Vision Combined with Convolutional Neural Network[J]. Science and Technology of Food Industry, 2025, 46(3): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030200.
Citation: ZHANG Quantong, ZHENG Yao, YANG Liu, et al. Rapid Detection of Astaxanthin in Antarctic Krill Meal by Computer Vision Combined with Convolutional Neural Network[J]. Science and Technology of Food Industry, 2025, 46(3): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030200.

计算机视觉结合卷积神经网络快速检测南极磷虾粉中的虾青素含量

Rapid Detection of Astaxanthin in Antarctic Krill Meal by Computer Vision Combined with Convolutional Neural Network

  • 摘要: 为实现南极磷虾粉中虾青素含量的快速检测,借助计算机视觉和卷积神经网络建立了一种虾粉虾青素含量的测定方法。以70个南极磷虾粉样本,通过高效液相色谱法测定虾青素含量,计算机视觉系统采集图像,将虾青素含量与图像对应组成数据集并对数据集进行数据增强;使用TensorFlow学习框架构建模型,使用5折交叉验证进行模型调参及评估并选出最优参数模型;随机划分数据集对最优参数模型进行评估,最后随机挑选数据集中的30张图像进行模型验证。结果显示经过交叉验证后的最优参数模型的均方根误差(Root Mean Square Error,RMSE)为3.59;模型评估阶段,模型重复运行3次,测试集的决定系数(Coefficient of Determination,R2)、均绝对误差(Mean Absolute Error,MAE)、均方误差(Mean Square Error,MSE)、RMSE的平均值分别为0.9626、1.49、4.22、2.05。模型验证阶段,模型预测虾青素含量的相对误差介于0.10%~6.46%之间,预测结果与观测值之间偏差较小。因此,该虾青素含量预测模型能够较准确的预测虾青素含量,进而实现虾粉虾青素含量的快速无损检测。

     

    Abstract: To achieve rapid detection of astaxanthin content in Antarctic krill meal, a determination method for astaxanthin content in krill meal was established using computer vision and convolutional neural networks. A total of 70 krill meal samples were analyzed using high-performance liquid chromatography to determine their astaxanthin contents as label, and corresponding images of the samples were acquired using a computer vision system to form the dataset and the dataset was augmented. The model was built using the TensorFlow learning framework. The 5-fold cross-validation was used to tune and evaluate the model and select the optimal parameter model. The optimal parameter model was evaluated by randomly dividing the dataset, and 30 images from the dataset were randomly selected for model validation. The results showed that the optimal hyperparameters model with a root mean square error (RMSE) of 3.59 was preserved through a five-fold cross-validation. For model evaluation, the model was repeated three times. The mean values of the coefficient of determination (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) for the test set were 0.9626, 1.49, 4.22, and 2.05, respectively. For model validation, the relative errors ranged from 0.10% to 6.46%, indicating small deviations between the predictions and the observations. The astaxanthin content prediction model demonstrated high accuracy, enabling quick and nondestructive detection of astaxanthin content in krill meal samples.

     

/

返回文章
返回