代谢工程改造微生物合成单萜芳香产品的研究进展

朱坤 孔婧 荣兰新 刘士琦 肖冬光 于爱群

朱坤,孔婧,荣兰新,等. 代谢工程改造微生物合成单萜芳香产品的研究进展[J]. 食品工业科技,2021,42(7):395−403. doi:  10.13386/j.issn1002-0306.2020050361
引用本文: 朱坤,孔婧,荣兰新,等. 代谢工程改造微生物合成单萜芳香产品的研究进展[J]. 食品工业科技,2021,42(7):395−403. doi:  10.13386/j.issn1002-0306.2020050361
ZHU Kun, KONG Jing, RONG Lanxin, et al. Advances in Microbial Metabolic Engineering for Producing Monoterpene Aroma Products[J]. Science and Technology of Food Industry, 2021, 42(7): 395−403. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050361
Citation: ZHU Kun, KONG Jing, RONG Lanxin, et al. Advances in Microbial Metabolic Engineering for Producing Monoterpene Aroma Products[J]. Science and Technology of Food Industry, 2021, 42(7): 395−403. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020050361

代谢工程改造微生物合成单萜芳香产品的研究进展

doi: 10.13386/j.issn1002-0306.2020050361
基金项目: 天津市教委科研计划项目(2017ZD03);天津市自然科学基金 (17JCYBJC40800)
详细信息
    作者简介:

    朱坤(1994−),男,硕士研究生,研究方向:代谢工程改造酵母菌合成植物天然产物,E-mail:1602758328@qq.com

    通讯作者:

    于爱群(1983−),男,博士,教授,研究方向:微生物代谢工程及合成生物学研究,E-mail:yuaiqun@tust.edu.cn

  • 中图分类号: Q935

Advances in Microbial Metabolic Engineering for Producing Monoterpene Aroma Products

  • 摘要: 单萜及其衍生物是重要的植物天然产物,且具有多种生物学功能。该类物质在多个领域中均表现出较高的开发利用价值,目前已被作为优质香精香料广泛应用于食品、饮料、化妆品和医药工业中,市场需求日益增长。从植物中提取这些单萜芳香产品存在着来源少、含量低和分离困难等缺点,很难满足市场需求。因此,开发生产单萜芳香产品可再生的微生物资源来补充甚至代替原有的植物资源就具有重要的理论意义和应用价值。近年来,研究人员利用代谢工程技术已经成功构建了合成单萜芳香产品的微生物细胞工厂,达到了利用微生物合成法生产该类工业产品的目的。本文主要从菌株改造、发酵优化及产物分离等角度总结了相关产物合成的代谢工程实例,并分析了目前利用代谢工程改造微生物合成单萜芳香产品所面临的瓶颈问题及其可能的解决方法,旨在为构建异源、廉价、高效生产单萜芳香产品的微生物细胞工厂并最终实现其绿色制造提供参考。
  • 图  1  微生物单萜及其衍生物的生物合成途径

    Figure  1.  Overview of the biosynthetic pathway of monoterpenes and their derivatives in microorganisms

    表  1  微生物单萜及其衍生物的产量和相关的途径改造策略

    Table  1.   The production of monoterpenes and the related engineering strategies in microorganisms

    宿主产品最高产量(mg/L)改造策略和发酵方式参考文献
    解脂耶氏酵母柠檬烯165.31)增加tNDPS1tLS基因拷贝;
    2)发酵条件优化;
    3)分批补料发酵。
    [22]
    解脂耶氏酵母柠檬烯D型11.7051)单基因过表达基因HMGR
    2)发酵条件优化;
    3)厨房废油作为单一碳源;
    4)摇瓶培养。
    [17]
    L型11.088
    大肠杆菌柠檬烯L型4351)单质粒异源表达多个基因;
    2)提高酶MK和PMK的含量;
    3)表达外源基因HMGSHMG1和截断型GPPS酶;
    4)摇瓶培养。
    [20]
    酿酒酵母柠檬烯D型0.121)戊烷萃取;
    2)固相微萃取;
    3)十二烷覆盖;
    4)顶空捕捉。
    [23]
    L型0.49
    酿酒酵母香叶醇16801)过表达基因tHMG1IDI1
    2)利用计算机结构分析和建模来截短CrGES氮端的转运肽;
    3)将GES和Erg20偶联为融合蛋白表达;
    4)分批补料发酵。
    [2]
    大肠杆菌香叶醇20001)添加十四酸异丙酯形成水-有机两相培养体系;
    2)过表达乙酰酯酶Aes基因,验证了大肠杆菌能够水解乙酸香叶酯;
    3)采用葡萄糖饥饿策略;
    4)摇瓶培养。
    [21]
    大肠杆菌紫苏醇1051)诱导剂IPTG和阿拉伯糖诱导细胞来提高P450表达水平;
    2)Amberlite树脂回收产品;
    3)摇瓶培养。
    [20]
    解脂耶氏酵母芳樟醇6.961)共过表达HMG1IDI1ERG20F88W-N119W三个基因;
    2)添加混合碳源、辅助碳源来优化培养基;
    3)摇瓶培养。
    [16]
    酿酒酵母芳樟醇23.451)突变基因ERG20的K197位点;
    2)线粒体区室化;
    3)添加辅助碳源来优化培养基;
    4)分批发酵。
    [18]
    下载: 导出CSV
  • [1] Aguilar S R, Stülke J, Dijl J M V. Less is more: Toward a genome-reduced Bacillus cell factory for ‘Difficult proteins’[J]. ACS Synthetic Biology,2019,8(1):99−108. doi:  10.1021/acssynbio.8b00342
    [2] Jiang G Z, Yao M D, Wang Y, et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae[J]. Metabolic Engineering,2017,41:57−66. doi:  10.1016/j.ymben.2017.03.005
    [3] Wu J, Cheng S, Cao J, et al. Systematic optimization of limonene production in engineered Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2019,67(25):7087−7097. doi:  10.1021/acs.jafc.9b01427
    [4] Ciriminna R, Lomeli-Rodriguez M, Demma Carà P, et al. Limonene: A versatile chemical of the bioeconomy[J]. Chemical Communications,2014,50(97):15288−15296. doi:  10.1039/C4CC06147K
    [5] Tracy N I, Chen D C, Crunkleton D W, et al. Hydrogenated monoterpenes as diesel fuel additives[J]. Fuel,2009,88(11):2238−2240. doi:  10.1016/j.fuel.2009.02.002
    [6] 任建峰, 张其胜, 王慧. 紫苏醇对结肠癌SW480细胞凋亡的影响及其机制研究[J]. 肿瘤药学,2019,9(3):396−400.
    [7] Arunachalam K, Ramar M, Ramanathan S, et al. In vivo protective effect of geraniol on colonization of Staphylococcusepidermidis in rat jugular vein catheter model[J]. Pathogens and Disease,2018,76(5):fty055. doi:  10.1093/femspd/fty055
    [8] Alves S, Duarte A, Sousa S, et al. Study of the major essential oil compounds of Coriandrum sativum against Acinetobacter baumannii and the effect of linalool on adhesion, biofilms and quorum sensing[J]. Biofouling,2016,32(1−2):155−165.
    [9] Lee S C, Wang S Y, Li C C, et al. Anti-inflammatory effect of cinnamaldehyde and linalool from the leaf essential oil of Cinnamomum osmophloeum Kanehira in endotoxin-induced mice[J]. Journal of Food and Drug Analysis,2018,26(1):211−220. doi:  10.1016/j.jfda.2017.03.006
    [10] Lee B K, Jung A N, Jung Y S. Linalool ameliorates memory loss and behavioral impairment induced by REM-Sleep deprivation through the serotonergic pathway[J]. Biomolecules Therapeutics,2018,26(4):368−373. doi:  10.4062/biomolther.2018.081
    [11] 庞亚如, 胡智慧, 肖冬光, 等. 柠檬烯和红没药烯的微生物代谢工程[J]. 生物工程学报,2018,34(1):34−43.
    [12] Hu Z H, Tang B, Wu Q, et al. Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium 'Siberia' and unscented Lilium 'Novano'[J]. Frontiers in Plant Science,2017,8:1351. doi:  10.3389/fpls.2017.01351
    [13] Frank A, Groll M. The methylerythritol phosphate pathway to isoprenoids[J]. Chemical Reviews,2017,117(8):5675−5703. doi:  10.1021/acs.chemrev.6b00537
    [14] Liao P, Hemmerlin A, Bach T J, et al. The potential of the mevalonate pathway for enhanced isoprenoid production[J]. Biotechnology Advances,2016,34(5):697−713. doi:  10.1016/j.biotechadv.2016.03.005
    [15] Jozwiak A, Lipko A, Kania M, et al. Modeling of dolichol mass spectra isotopic envelopes as a tool to monitor isoprenoid biosynthesis[J]. Plant Physiology,2017,174(2):857−874. doi:  10.1104/pp.17.00036
    [16] Cao X, Wei L J, Lin J Y, et al. Enhancing linalool production by engineering oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology,2017,245(Part B):1641−1644.
    [17] Pang Y, Zhao Y, Li S L, et al. Engineering the oleaginous yeast Yarrowia lipolytica to produce limonene from waste cooking oil[J]. Biotechnology for Biofuels,2019,12(1):241. doi:  10.1186/s13068-019-1580-y
    [18] Zhang Y, Wang J, Cao X, et al. High-level production of linalool by engineered Saccharomyces cerevisiae harboring dual mevalonate pathways in mitochondria and cytoplasm[J]. Enzyme and Microbial Technology,2020,134:109462. doi:  10.1016/j.enzmictec.2019.109462
    [19] Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization[J]. Archives of Biochemistry and Biophysics,2002,405(1):130−136. doi:  10.1016/S0003-9861(02)00335-1
    [20] Aonso-Gutierrez J, Chan R, Batth T S, et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production[J]. Metabolic Engineering,2013,19:33−41. doi:  10.1016/j.ymben.2013.05.004
    [21] Liu W, Xu X, Zhang R, et al. Engineering Escherichia coli for high-yield geraniol production with biotransformation of geranyl acetate to geraniol under fed-batch culture[J]. Biotechnol for Biofuels,2016,9:58. doi:  10.1186/s13068-016-0466-5
    [22] Cheng B Q, Wei L J, Lv Y B, et al. Elevating limonene production in oleaginous yeast Yarrowia lipolytica via genetic engineering of limonene biosynthesis pathway and optimization of medium composition[J]. Biotechnology and Bioprocess Engineering,2019,24(3):500−506. doi:  10.1007/s12257-018-0497-9
    [23] Jongedijk E, Cankar K, Ranzijn J, et al. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae[J]. Yeast,2015,32(1):159−171.
    [24] Belletti N, Kamdem S S, Tabanelli G, et al. Modeling of combined effects of citral, linalool and beta-pinene used against Saccharomyces cerevisiae in citrus-based beverages subjected to a mild heat treatment[J]. International Journal of Food Microbiology,2010,136(3):283−289. doi:  10.1016/j.ijfoodmicro.2009.10.030
    [25] Saharan R K, Sharma S C. Effects of glutathione modulation on oxidative stress and enzymatic antioxidant defence in yeast Pachysolen tannophilus[J]. Current Microbiology,2011,62(3):944−949. doi:  10.1007/s00284-010-9808-x
    [26] 王诗语, 王鹤蓉, 黄子豪, 等. 利用基因工程改造的大肠杆菌合成蒎烯[J]. 生物技术通讯,2019,30(4):455−463. doi:  10.3969/j.issn.1009-0002.2019.04.001
    [27] Zada B, Wang C, Park J B, et al. Metabolic engineering of Escherichia coli for production of mixed isoprenoid alcohols and their derivatives[J]. Biotechnology for Biofuels,2018,11:210. doi:  10.1186/s13068-018-1210-0
    [28] Krivoruchko A, Nielsen J. Production of natural products through metabolic engineering of Saccharomyces cerevisiae[J]. Current Opinion in Biotechnology,2015,35:7−15. doi:  10.1016/j.copbio.2014.12.004
    [29] Jin C C, Zhang J L, Song H, et al. Boosting the biosynthesis of betulinic acid and related triterpenoids in Yarrowia lipolytica via multimodular metabolic engineering[J]. Microbial Cell Factories,2019,18:77. doi:  10.1186/s12934-019-1127-8
    [30] Spagnuolo M, Shabbir H M, Gambill L, et al. Alternative substrate metabolism in Yarrowia lipolytica[J]. Frontiers in Microbiology,2018,9:1077. doi:  10.3389/fmicb.2018.01077
    [31] Formighieri C, Melis A. A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and β-phellandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria)[J]. Metabolic Engineering,2015,32:116−124. doi:  10.1016/j.ymben.2015.09.010
    [32] Shabestary K, Anfelt J, Ljungqvist E, et al. Targeted repression of essential genes to arrest growth and increase carbon partitioning and biofuel titers in cyanobacteria[J]. ACS Synthetic Biology,2018,7(7):1669−1675. doi:  10.1021/acssynbio.8b00056
    [33] 林章凛, 张艳, 王胥, 等. 合成生物学研究进展[J]. 化工学报,2015,66(8):2863−2871.
    [34] Lv X, Xie W, Lu W, et al. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy[J]. Journal of Biotechnology,2014,186:128−136. doi:  10.1016/j.jbiotec.2014.06.024
    [35] Hirokawa Y, Kubo T, Soma Y, et al. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942[J]. Metabolic Engineering,2020,57:23−30. doi:  10.1016/j.ymben.2019.07.012
    [36] Webb J P, Arnold S A, Baxter S, et al. Efficient bio-production of citramalate using an engineered Escherichia coli strain[J]. Microbiology,2018,164(2):133−141. doi:  10.1099/mic.0.000581
    [37] Wadhwa M, Srinivasan S, Bachhawat AK, et al. Role of phosphate limitation and pyruvate decarboxylase in rewiring of the metabolic network for increasing flux towards isoprenoid pathway in a TATA binding protein mutant of Saccharomyces cerevisiae[J]. Microbial Cell Factories,2018,17(1):152. doi:  10.1186/s12934-018-1000-1
    [38] Deng Y, Sun M, Xu S, et al. Enhanced (S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae[J]. Journal of Applied Microbiology,2016,121(1):187−195. doi:  10.1111/jam.13105
    [39] Liu G S, Li T, Zhou W, et al. The yeast peroxisome: A dynamic storage depot and subcellular factory for squalene overproduction[J]. Metabolic Engineering,2020,57:151−161. doi:  10.1016/j.ymben.2019.11.001
    [40] Gu H, Zhu Y, Peng Y, et al. Physiological mechanism of improved tolerance of Saccharomyces cerevisiae to lignin-derived phenolic acids in lignocellulosic ethanol fermentation by short-term adaptation[J]. Biotechnology for Biofuels,2019,12(1):268. doi:  10.1186/s13068-019-1610-9
    [41] Zhang L, Xiao W H, Wang Y, et al. Chassis and key enzymes engineering for monoterpenes production[J]. Biotechnology Advances,2017,35(8):1022−1031. doi:  10.1016/j.biotechadv.2017.09.002
    [42] Weber W, Daoud-El Baba M, Fussenegger M. Synthetic ecosystems based on airborne inter- and intrakingdom communication[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(25):10435−10440. doi:  10.1073/pnas.0701382104
    [43] Minami H, Kim J S, Ikezawa N, et al. Microbial production of plant benzylisoquinoline alkaloids[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(21):7393−7398. doi:  10.1073/pnas.0802981105
    [44] Ward V C A, Chatzivasileiou A O, Stephanopoulos G. Cell free biosynthesis of isoprenoids from isopentenol[J]. Biotechnology and Bioengineering,2019,116(12):3269−3281. doi:  10.1002/bit.27146
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  3
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-01
  • 网络出版日期:  2021-01-28

目录

    /

    返回文章
    返回

    重要通知

    从2020年12月23日起,若所投稿件的参考文献为中文,则需补充此中文参考文献的英文格式,特此通知。