Optimization of Extraction Process of Flavonoids from Fagopyrum esculentum Moench Leaves and Its Antioxidant Properties
-
摘要: 为了对荞麦叶黄酮的提取和抗氧化性进行研究,采用响应面法对超声波法辅助提取荞麦叶黄酮的工艺进行了优化,高效液相色谱(HPLC)法分析了荞麦叶黄酮成分,并对荞麦叶黄酮的抗氧化性进行了测定。结果表明:当超声频率45 kHz、超声功率100 W、液料比30:1 mL:g、超声时间22 min,超声温度为28 ℃,乙醇体积分数为51%时,荞麦叶黄酮的提取量为80.311 mg/g,与预测值81.414 mg/g相对误差为1.35%,表明该模型预测值与实际值拟合效果良好。HPLC检测表明,荞麦叶黄酮的主要成分为芦丁和槲皮素,其含量分别为66.5%和13.9%。抗氧化试验表明,荞麦叶黄酮对DPPH自由基(DPPH·)、ABTS自由基(ABTS+·)和羟基自由基(·OH)的半清除浓度(IC50)分别为0.012、0.044、0.344 mg/mL,表明其具有较强的抗氧化能力。本试验为荞麦叶的综合利用提供了理论依据。Abstract: In order to study the extraction process and antioxidant properties of flavonoid in Fagopyrum esculentum Moench leaves. The ultrasonic-assisted extraction process of flavonoids from Fagopyrum esculentum Moench leaves was optimized by response surface method, the contents of flavonoids was analyzed by high performance liquid chromatography (HPLC), and the antioxidant activity was explored.The results showed that when the ultrasonic frequency was 45 kHz, the ultrasonic power was 100 W, the liquid -solid ratio was 30:1(mL:g), the ultrasonic time was 22 min, the ultrasonic temperature was 28 ℃, and the volume fraction of ethanol was 51%, the yield of flavonoids in Fagopyrum esculentum Moench leaves was 80.311mg/g. The relative error was 1.35% compared with the predicted value of 81.414 mg/g, which proved that the theoretical predicted value of the model well fitted with the actual value. The result of HPLC showed that rutin and quercetin were the main components of flavonoid in Fagopyrum esculentum Moench leaves, and their contents were 66.5% and 13.9%, respectively. The antioxidant activity test showed that the half maximal inhibitory concentration (IC50) of the flavonoids to DPPH·, ABTS+· and ·OH was 0.012, 0.044, 0.344 mg/mL, respectively, indicated that the flavonoids had strong antioxidant capacity. This experiment provided a theoretical basis for the comprehensive utilization of Fagopyrum esculentum Moench leaves.
-
表 1 响应面试验因素水平表
Table 1. Factors and levels table of response surface experiment
水平 因素 A超声时间(min) B乙醇体积分数(%) C超声温度(℃) −1 15 45 25 0 20 50 30 1 25 55 35 表 2 响应面试验设计及结果
Table 2. Design and results of response surface experiment
试验号 A超声时间
(min)B提取剂乙醇
体积分数(%)C超声温度
(℃)黄酮提取量
(mg/g)1 0 0 0 80.79 2 0 0 0 80.68 3 1 1 0 79.15 4 −1 −1 0 72.54 5 −1 0 −1 72.01 6 −1 0 1 71.67 7 −1 1 0 74.92 8 0 0 0 80.12 9 1 0 −1 78.85 10 0 −1 −1 76.97 11 1 −1 0 76.27 12 0 1 1 74.71 13 1 0 1 72.67 14 0 −1 1 74.23 15 0 1 −1 77.99 16 0 0 0 80.84 17 0 0 0 80.96 表 3 二次响应面回归模型方差分析及显著性检验结果
Table 3. ANOVA for quadratic response surface model and significance of difference
差异来源 平方和 自由度 均方 F值 P值 显著性 模型 183.81 9 20.42 64.11 <0.0001 ** A 31.21 1 31.21 97.96 <0.0001 ** B 5.71 1 5.71 17.93 0.0039 ** C 19.66 1 19.66 61.70 0.0001 ** AB 0.063 1 0.063 0.20 0.6712 AC 8.53 1 8.53 26.77 0.0013 ** BC 0.073 1 0.073 0.23 0.6470 A2 53.56 1 53.56 168.12 <0.0001 ** B2 8.15 1 8.15 25.59 0.0015 ** C2 46.17 1 46.17 144.94 <0.0001 ** 残差 2.23 7 0.32 失拟项 1.80 3 0.60 5.59 0.0650 误差项 0.43 4 0.11 总离差 186.04 16 R2=0.988 R2Adj=0.9726 R2Pred=0.8416 精密度=20.7 CV(%)=0.74 注:**:差异极显著(P<0.01);*:差异显著(P<0.05)。 -
[1] 唐宇, 邵继荣, 周美亮. 中国荞麦属植物分类学的修订[J]. 植物遗传资源学报,2019,20(3):646−653. [2] 宋越冬, 王明超, 韩晓静, 等. 超声辅助提取荞麦叶绿原酸及体外降糖活性研究[J]. 食品科技,2020,45(7):242−249. [3] Lan-Sook Lee, Eun-Ji Choi, Chang-Hee, et al. Contribution of flavonoids to the antioxidant properties of common and tartary buckwheat[J]. Journal of Cereal Science,2016,68(3):181−186. [4] 章洁琼, 邹军, 卢扬, 等. 不同荞麦品种主要功能成分分析及评价[J]. 种子,2020,39(2):107−112, 117. [5] Zhang W N, Zhu Y Y, Liu Q Q, et al. Identification and quantification of polyphenols in hull, bran and endosperm of common buckwheat (Fagopyrum esculentum) seeds[J]. Journal of Functional Foods,2017,38(11):363−369. [6] Tomotake H, Kayashita J, Kato N. Hypolipidemic activity of common (Fagopyum esculentum Moench) and tartary (Fagopyum esculentum Gaertn.) buckwheat[J]. Jonrnal of the Science of Food & Agriculture,2015,95(10):1963−1967. [7] 林红梅, 韩淑英, 栾新段, 等. 甜荞麦种子提取物镇痛抗炎作用的实验研究[J]. 华北煤炭医学院学报,2003(3):290−291. [8] Nguyen Ngoc Thanh Tien, Le Ngoc Dang Trinh, Naoto Inoue, et al. Nutritional composition, bioactive compounds, and diabetic enzyme inhibition capacity of three varieties of buckwheat in Japan[J]. Cereal Chemistry,2018,95(5):615−624. doi: 10.1002/cche.10069 [9] Mariotti M, Andreuccetti V, Nuvoloni R, et al. Rutin and quercetin content in the forage of common buckwheat as affected by maturity and conservation method[J]. Grassland Science,2017,63(3):169−176. doi: 10.1111/grs.12160 [10] 符献琼, 张慧, 李承业, 等. 荞麦叶的营养成分及其营养特性[J]. 新疆农业科学,1994(3):105−108. [11] 孙艳, 崔旭盛, 刘静, 等. 酸枣叶黄酮的提取工艺优化及其抗秀丽隐杆线虫氧化损伤活性[J]. 食品工业科技,2020,41(8):143−150. [12] 王树宁, 宋照军, 黄滢洁, 等. 响应面法优化超声波辅助提取侧柏叶总黄酮工艺[J]. 食品研究与开发,2020,41(9):88−93. doi: 10.12161/j.issn.1005-6521.2020.09.014 [13] Wang Y Y, Duan X, Ren G Y, et al. Comparative study on the flavonoids extraction rate and antioxidant activity of onions treated by three different drying methods[J]. Drying Technology,2018,24(11):245−252. [14] Wang Y Q, Gao Y J, Ding H, et al. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity[J]. Food Chemistry,2017,218:152−158. doi: 10.1016/j.foodchem.2016.09.058 [15] Li J K, Wu C C, Li F, et al. Optimization of ultrasound-assisted water extraction of flavonoids from Psidium guajava leaves by response surface analysis[J]. Preparative Biochemistry and Biotechnology,2019,49(1):21−29. doi: 10.1080/10826068.2018.1466158 [16] 徐树来, 王丽, 任红波, 等. 蒲公英黄酮的提取工艺优化及主要成分浅析[J]. 食品工业科技,2020,41(19):172−178. [17] 魏永生, 王永宁, 石玉平, 等. 分光光度法测定总黄酮含量的实验条件研究[J]. 青海大学学报(自然科学版),2003,21(3):61−63. doi: 10.3969/j.issn.1006-8996.2003.03.019 [18] Song H F,Zhang Q B, Zhang A S, et al. In vitro antioxidant activity of polysaccharides extracted from Bryopsis plumosa[J]. Carbohydrate Polymers,2010,80(4):1057−1061. doi: 10.1016/j.carbpol.2010.01.024 [19] ] Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay[J]. Free Radical Biology and Medicine,1999,26(9):1231−1237. [20] 董迪迪, 王鸿飞, 周增群, 等. 杨梅籽油抗氧化活性及其调节血脂作用的研究[J]. 中国粮油学报,2014,29(5):53−57. [21] Mukhopadhyay D, Dasgupta P, Roy D S, et al. A sensitive in vitro spectrophotometric hydrogen peroxide scavenging assay using 1, 10-phenanthroline[J]. Free Radicals and Antioxidants,2016,6(1):124−132. doi: 10.5530/fra.2016.1.15 [22] 宋伟. 银杏叶超声萃取机制及提取条件的研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. [23] 徐艳丽, 赵文英, 孙彦妮, 等. 响应面优化苦参种子黄酮超声提取工艺[J]. 粮食与油脂,2019,32(2):87−90. doi: 10.3969/j.issn.1008-9578.2019.02.025 [24] 陈建福. 响应面优化黄槿叶总黄酮提取工艺及其抗氧化活性[J]. 食品研究与开发,2019,40(14):85−91. [25] 禄璐, 米佳, 罗青, 等. 枸杞总黄酮提取工艺优化及其体外抗氧化活性分析[J]. 食品工业科技,2019,40(24):165−171. [26] 秦晶晶, 钱慧琴, 赵媛, 等. 柿叶总黄酮提取工艺优化及其抗氧化活性[J]. 食品工业科技,2020,41(13):32−38, 45. [27] 田明杰, 谭宏渊, 叶帆宇, 等. 福白菊总黄酮的微波辅助提取工艺优化及其抗氧化活性研究[J]. 中国酿造,2020,39(1):170−174. doi: 10.11882/j.issn.0254-5071.2020.01.033 [28] 孙艳华, 刘永彬. 乙醇预处理法提取荞麦茎叶中黄酮类化合物的研究[J]. 天津医科大学学报,2006(3):375−377, 387. doi: 10.3969/j.issn.1006-8147.2006.03.005 [29] 单科开, 王鸿飞, 许凤, 等. 苦菜总黄酮超声波辅助提取及抗氧化能力研究[J]. 核农学报,2019,33(9):1755−1764. doi: 10.11869/j.issn.100-8551.2019.09.1755 -