Preparation and Properties of Puerarin Microcapsules
-
摘要: 以阿拉伯胶和β-环状糊精为壁材,采用喷雾干燥法制备葛根素微胶囊。通过单因素实验和正交试验考察复合乳化剂配比、乳化剂添加量、β-环状糊精和阿拉伯胶质量比、壁芯比和固形物含量对乳化液稳定性的影响,同时考察进风温度、进料量、均质时间对葛根素微胶囊包埋率的影响。结果表明,葛根素微胶囊的最佳工艺条件为:复合乳化剂(单甘酯:蔗糖酯)质量比4:6(g/g),乳化剂添加量为1.6%,壁材(β-环糊精:阿拉伯胶)比为5:3(g/g),壁芯比为1:0.15(g/g),固形物含量15%,进口温度160 ℃,进料量为4 mL/min,均质时间为6 min,此条件下的葛根素微胶囊包埋率为91.16%,微胶囊产品为乳白色粉末、细腻均匀无异味,扫描电子显微镜结果显示微胶囊呈较光滑球形,粒径约为15~25 μm,水分含量为2.83%,堆积密度为0.55 g/cm3,休止角为33.60°。因此,最佳制备条件下的微胶囊产品品质较优,有利于贮藏且具有较好的流动性和溶解性,能够为葛根素微胶囊的开发利用提供参考依据。Abstract: The aim of this study is to optimize the experimental conditions for the preparation of Puerarin microcapsules via the spray-drying using gum arabic and β-cyclodextrinas wall materials. The effects of compound emulsifier ratio, emulsifier concentration, β-cyclodextrin/gum arabic ratio, wall/core ratio and solid concentration on emulsion stability were investigated, as well as the effect of inlet air temperature, feed flow rate and homogenization time on microencapsulation efficiency. The results showed that the maximum encapsulation efficiency of 91.16% was achieved under following condition: composite emulsifier (monoglyceride: sucrose ester=4:6, g/g), emulsifier concentration 1.6%, β-cyclodextrin/gum arabic ratio 5:3 (g/g), wall/core ratio 1:0.15(g/g), solid concentration 15%, inlet temperature 160 ℃, feed flow rate 4 mL/min, homogenization time 6 min. SEM examination showed that the obtained microcapsules were spherical in shape with smooth and continuous surfaces, witha particle size of 15~25 μm. It had a moisture of 2.83%, bulk density of 0.55 g/cm3and angle of repose of 33.60°. Therefore, high-quality microcapsules were obtained under the optimized condition, which had good fluidity and solubility, and can provide reference for the development and utilization of puerarin microcapsules.
-
Key words:
- Puerarin /
- emulsion /
- microcapsule /
- spray drying /
- microcapsule efficiency
-
表 1 L9(34)正交实验因素与水平
Table 1. Factors and levels used in orthogonal array experimentsL9(34) for optimization of microcapsule formulation
水平 A乳化剂用量(%) B固形物含量(%) C壁芯比(g/g) D壁材比(g/g) 1 1.4 15 1:0.10 5:3 2 1.5 20 1:0.15 5:4 3 1.6 25 1:0.20 5:5 表 2 L9(34)正交实验与水平
Table 2. Table1 Factors and levels used in orthogonal array experiments L9(34) for optimization of microcapsule formulation
水平 A进口温度(℃) B进料量(mL/min) C均质时间(min) 1 150 3.3 5 2 160 4.0 6 3 170 4.7 7 表 3 微胶囊乳化液正交实验设计及结果
Table 3. Orthogonal array design with experimental results for microcapsule formulation
试验号 A乳化剂
用量B固形物
含量C壁芯
比D壁材
比乳化液稳
定性(%)1 1 1 1 1 90.01 2 1 2 2 2 84.00 3 1 3 3 3 71.01 4 2 1 2 3 89.42 5 2 2 3 1 89.67 6 2 3 1 2 72.45 7 3 1 3 2 89.47 8 3 2 1 3 90.48 9 3 3 2 1 83.68 k1 81.67 89.63 84.31 87.79 k2 83.85 88.05 85.70 81.97 k3 87.88 75.71 83.38 83.64 R 6.20 13.92 2.32 5.81 表 4 微胶囊乳化液正交试验数据方差分析
Table 4. Analysis of variance of the orthogonal array design for microcapsule formulation
因素 平方和 自由度 均方 F值 显著性 A 59.45 2 29.72 10.93 * B 348.47 2 174.23 64.10 ** D 53.78 2 26.89 9.89 * C 8.15 2 2.72 总和 469.85 8 注:*表示差异显著,P<0.05;**表示差异极显著,P<0.01;表6同。 表 5 微胶囊制备正交试验设计及结果
Table 5. Orthogonal array design with experimental results
试验号 A进口温度 B进料量 C均质时间 D空白 包埋率(%) 1 1 1 1 1 71.56 2 1 2 2 2 77.88 3 1 3 3 3 73.97 4 2 1 2 3 88.96 5 2 2 3 1 86.67 6 2 3 1 2 76.93 7 3 1 3 2 74.67 8 3 2 1 3 79.88 9 3 3 2 1 69.72 k1 74.47 78.40 76.12 75.98 k2 84.19 81.48 78.85 76.49 k3 74.76 73.54 78.44 80.94 R 9.72 7.94 2.73 4.95 表 6 微胶囊正交试验数据方差分析
Table 6. Analysis of variance of the orthogonal array design for microcapsule formulation
因素 平方和 自由度 均方 F值 显著性 A 183.42 2 91.71 21.20 ** B 96.06 2 48.03 11.10 * C 12.98 2 4.33 误差e 44.54 2 22.27 总和 337.00 8 表 7 质量指标测定结果
Table 7. Quality attributes of microcapsules
序号 理化指标 结果 1 水分含量(%) 2.83 ± 0.69 2 堆积密度(g/cm3) 0.55 ± 0.02 3 溶解度(%) 96.35 ± 0.63 4 休止角(θ) 33.60 ± 1.62 -
[1] 杨新颖. 葛根素药理活性研究进展[J]. 科学技术创新,2020,8:194−195. doi: 10.3969/j.issn.1673-1328.2020.06.111 [2] Li J, Guo C, Lu X, et al. Anti-colorectal cancer biotargets and biological mechanisms of puerarin: Study of molecular networks[J]. European Journal of Pharmacology,2019,858:172483−172490. doi: 10.1016/j.ejphar.2019.172483 [3] 张瑞婷, 周涛, 宋潇潇, 等. 葛根的活性成分及其药理作用研究进展[J]. 安徽农学通报,2018,24(1):15−17. doi: 10.3969/j.issn.1007-7731.2018.01.007 [4] Zhou Y X, Zhang H, Peng C. Puerarin: A review of pharmacological effects[J]. Phytotherapy Research,2014,28(7):961−975. doi: 10.1002/ptr.5083 [5] 肖晨, 高洁, 李红艳, 等. 微胶囊技术的研究进展[J]. 科学技术创新,2019,29:36−37. doi: 10.3969/j.issn.1673-1328.2019.06.021 [6] Rocío P M, Rubén L N, Maria J P, et al. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications[J]. Food Chemistry,2015,168:124−133. doi: 10.1016/j.foodchem.2014.07.051 [7] She Z W, Chun X, Li J, et al. Encapsulation of basic fibroblast growth factor by polyelectrolyte multilayer microcapsules and its controlled release for enhancing cell proliferation[J]. Biomacromolecules,2012,13(7):2174−2180. doi: 10.1021/bm3005879 [8] Fernanda D M R, Ubbink J, Silveira Júnior, et al. Drying of maltodextrin solution in a vacuum spray dryer[J]. Chemical Engineering Research & Design,2019,146:78−86. [9] Piletti, Raquel, Zanetti, et al. Microencapsulation of garlic oil by βcyclodextrin as a thermal protection method for antibacterial action[J]. Materials Science and Engineering,2019,94:139−149. doi: 10.1016/j.msec.2018.09.037 [10] Pino J A, Odri Sosa-Moguel, Enrique Sauri-Duch, et al. Microencapsulation of winter squash (Cucurbita moschata Duchesne) seed oil by spray drying[J]. Journal of Food Processing and Preservation,2019,43(10):14136−14143. [11] 罗程印, 程远渡, 易有金, 等. 植物甾醇酯和葛根素复合微胶囊的制备工艺优化[J]. 食品科学,2016,37(6):26−33. [12] 刘全亮, 马传国, 季敏, 等. 棕榈油微胶囊化制备工艺研究[J]. 粮食与油脂,2014,27(1):32−35. [13] 王冰清, 陈加蓓, 胡叠, 等. 猕猴桃籽油微胶囊的制备及其品质研究[J]. 中国油脂,2019,44(10):18−22. [14] Carneiro, H C F, Tonon, R V, Grosso, C R F, et al. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials[J]. Journal of Food Engineering,2013,115(4):443–451. [15] 包珍, 鲁青, 张良, 等. 响应面法优化油茶籽油微胶囊喷雾干燥工艺的研究[J]. 粮油食品科技,2019,27(4):19−23. [16] 杨春瑜, 车丹, 卢彦岑, 等. 榛子油的微胶囊化工艺优化[J]. 食品工业科技,2020,41(8):183−188. [17] 黄雨洋, 齐宝坤, 赵城彬, 等. 微胶囊化核桃粉末油脂制备工艺及其氧化稳定性研究[J]. 中国食品学报,2019,19(2):132−138. [18] 侯钦帅. 南极磷虾油微胶囊制备及性质研究[D]. 青岛: 青岛大学, 2018. [19] 石静文, 马春丽, 梁佳祺, 等. 响应面法优化苹果多酚微胶囊工艺[J]. 食品工业科技,2019,40(15):155−160, 291. [20] 李艳南, 宋菲, 陈华, 等. 天然椰子油微胶囊制备工艺的优化[J]. 食品工业,2018,39(11):133−137. [21] Huq T, Carole F, Avik K, et al. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin[J]. Carbohydrate Polymers,2017,168:61. [22] 王寒, 于华忠, 罗庆华, 等. 大鲵油微胶囊制备工艺优化及其理化性质研究[J]. 中国油脂,2018,43(10):69−73. doi: 10.3969/j.issn.1003-7969.2018.10.014 [23] 石立芳, 刘香, 周沫霖, 等. 维生素A醋酸酯微胶囊化的制备工艺研究[J]. 高校化学工程学报,2019,33(2):400−409. doi: 10.3969/j.issn.1003-9015.2019.02.019 [24] 陈程莉, 李丰泉, 刁倩, 等. 黑枸杞花青素微胶囊优化及理化特性分析[J]. 食品与发酵工业,2020,46(5):208−214. [25] 胡婷婷, 王茵, 吴成业. 响应面法优化虾青素微胶囊制备工艺[J]. 食品科学,2014,35(12):53−59. doi: 10.7506/spkx1002-6630-201412010 [26] 刘斯博, 田少君, 夏克东. 亚麻籽油微胶囊的制备及理化性质研究[J]. 粮食与油脂,2015,28(8):17−20. doi: 10.3969/j.issn.1008-9578.2015.08.005 [27] 葛双双, 李坤, 涂行浩, 等. 余甘子核仁油微胶囊的制备及其稳定性分析[J]. 食品科学,2018,39(20):253−259. doi: 10.7506/spkx1002-6630-201820037 [28] 王月月, 段续, 任广跃, 等. 洋葱精油微胶囊喷雾干燥制备工艺优化及释放性能分析[J]. 食品与机械,2019,35(11):198−205. [29] Nambiar R B, Sellamuthu P S, Perumal A B. Microencapsulation of tender coconut water by spray drying: Effect of Moringa oleifera gum, maltodextrin concentrations, and inlet temperature on powder qualities[J]. Food and Bioprocess Technology,2017,10(9):1668−1684. doi: 10.1007/s11947-017-1934-z -