桑树桑黄总三萜提取工艺优化及其降血脂、抗氧化活性研究

何策 王超 陈纯 王婷婷

何策,王超,陈纯,等. 桑树桑黄总三萜提取工艺优化及其降血脂、抗氧化活性研究[J]. 食品工业科技,2021,42(7):208−215. doi:  10.13386/j.issn1002-0306.2020060237
引用本文: 何策,王超,陈纯,等. 桑树桑黄总三萜提取工艺优化及其降血脂、抗氧化活性研究[J]. 食品工业科技,2021,42(7):208−215. doi:  10.13386/j.issn1002-0306.2020060237
HE Ce, WANG Chao, CHEN Chun, et al. Optimization of Extraction Technology of Total Triterpenoids from Inonotus sanghuang and Their Hypolipidemic and Antioxidant Activities[J]. Science and Technology of Food Industry, 2021, 42(7): 208−215. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020060237
Citation: HE Ce, WANG Chao, CHEN Chun, et al. Optimization of Extraction Technology of Total Triterpenoids from Inonotus sanghuang and Their Hypolipidemic and Antioxidant Activities[J]. Science and Technology of Food Industry, 2021, 42(7): 208−215. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020060237

桑树桑黄总三萜提取工艺优化及其降血脂、抗氧化活性研究

doi: 10.13386/j.issn1002-0306.2020060237
基金项目: 浙江省自然科学基金项目(LZ20C160004);浙江农林大学学生科研训练项目资助(2019-3,2019-7)
详细信息
    作者简介:

    何策(1996−),女,硕士研究生,研究方向:食药两用活性物质提取与分析,E-mail:947033608@qq.com

    通讯作者:

    王超(1978−),男,博士,副教授,研究方向:食品与发酵工程,E-mail:tianshan@zafu.edu.cn

  • 中图分类号: S646

Optimization of Extraction Technology of Total Triterpenoids from Inonotus sanghuang and Their Hypolipidemic and Antioxidant Activities

  • 摘要: 选用超声波法提取桑树桑黄子实体中的三萜类化合物,在单因素试验的基础上采用响应面法优选最佳方案,并对其体外降血脂和抗氧化活性进行了测定。结果表明,超声波法提取桑树桑黄总三萜的最优条件为:提取时间49 min、乙醇浓度为80%、提取温度为61 ℃,料液比为1:22(g/mL),总三萜得率可达12.32% ± 0.17%。质量浓度为80 mg/mL的总三萜体外结合甘氨胆酸钠、牛磺胆酸钠、胆酸钠的能力为同剂量考来烯胺的50.93%、52.14%和43.06%,说明其具有较好的体外降血脂活性。总三萜具有较好的还原能力,并能有效清除DPPH和ABTS自由基,其IC50值分别为0.304和0.520 mg/mL,表明其具有较好的体外抗氧化活性。
  • 图  1  料液比对总三萜得率的影响

    Figure  1.  Effect of solvent-to-solid ratio on extraction of total triterpenoids

    图  2  提取时间对总三萜得率的影响

    Figure  2.  Effect of reaction time on extraction of total triterpenoids

    图  3  提取温度对总三萜得率的影响

    Figure  3.  Effect of reaction temperature on extraction of total triterpenoids

    图  4  乙醇浓度对总三萜得率的影响

    Figure  4.  Effect of reaction ethanol concentration on extraction of total triterpenoids

    图  5  各因素交互作用的响应面图和等高线图

    Figure  5.  Response surface and contour plots of the interaction of various factors

    图  6  桑树桑黄总三萜对胆酸盐的结合量

    注:图中不同的字母表示不同质量浓度的总三萜对同一种胆酸盐的结合量差异显著(P<0.05)。

    Figure  6.  The binding amount of total triterpenoids to cholic acid salt in Inonotue sanghuang

    图  7  桑树桑黄总三萜的DPPH自由基清除能力

    Figure  7.  DPPH free radical scavenging ability of total triterpenoids from Inonotus sanghuang

    图  8  桑树桑黄总三萜的ABTS自由基清除能力

    Figure  8.  ABTS free radical scavenging ability of total triterpenoids from Inonotus sanghuang

    图  9  VC和桑树桑黄总三萜的还原能力

    Figure  9.  The reduction capacity of VC and total triterpenoids from Inonotus sanghuang

    表  1  响应面试验因素水平表

    Table  1.   Factors and levels table of the response surface experiment

    水平因素
    A提取时间
    (min)
    B乙醇浓度
    (%)
    C提取温度
    (℃)
    D料液比
    (g/mL)
    −13565451:15
    04575551:20
    15585651:25
    下载: 导出CSV

    表  2  响应面设计与试验结果

    Table  2.   Design and results of response surface experiment

    试验号ABCDY总三萜得率(%)
    13565551:209.89 ± 0.26
    25565551:2010.18 ± 0.17
    33585551:209.93 ± 0.18
    45585551:2011.16 ± 0.21
    54575451:159.77 ± 0.15
    64575651:1510.24 ± 0.23
    74575451:259.92 ± 0.14
    84575651:2511.71 ± 0.27
    93575551:159.65 ± 0.25
    105575551:1510.14 ± 0.17
    113575551:259.96 ± 0.15
    125575551:2511.59 ± 0.22
    134565451:2010.03 ± 0.19
    144585451:209.98 ± 0.13
    154565651:2010.48 ± 0.25
    164585651:2011.97 ± 0.14
    173575451:209.79 ± 0.20
    185575451:2010.32 ± 0.13
    193575651:2010.07 ± 0.24
    205575651:2011.34 ± 0.19
    214565551:1510.15 ± 0.11
    224585551:1510.86 ± 0.13
    234565551:2510.94 ± 0.09
    244585551:2511.13 ± 0.18
    254575551:2011.92 ± 0.11
    264575551:2011.86 ± 0.13
    274575551:2012.18 ± 0.15
    284575551:2011.94 ± 0.07
    294575551:2011.81 ± 0.11
    下载: 导出CSV

    表  3  方差分析

    Table  3.   Analysis of variances

    差异来源平方和自由度均方FP显著性
    模型19.32141.3830.86<0.0001**
    A2.4712.4755.13<0.0001**
    B0.9410.9421.030.0004**
    C3.001367.06<0.0001**
    D1.6411.6436.72<0.0001**
    AB0.2210.224.940.0433*
    AC0.1410.143.060.1021
    AD0.3210.327.260.0174*
    BC0.5910.5913.250.0027**
    BD0.06810.0681.510.2392
    CD0.4410.449.740.0075**
    A25.6715.67126.81<0.0001**
    B22.3412.3452.23<0.0001**
    C23.5113.5178.37<0.0001**
    D23.001367.08<0.0001**
    残差0.63140.045
    失拟项0.55100.0552.680.1771
    纯误差0.08140.02
    总和19.9528
    注:“*”表示差异显著,P<0.05,“**”表示差异极显著,P<0.01。
    下载: 导出CSV

    表  4  桑树桑黄总三萜对胆酸盐的结合能力

    Table  4.   The binding capacity of total triterpenoids from Inonotus sanghuang to bile salts in vitro

    指标名称甘氨胆酸钠结合量(μmol/100 mg)相对考来烯胺的结合率(%)牛磺胆酸钠结合量(μmol/100 mg)相对考来烯胺的结合率(%)胆酸钠结合量(μmol/100 mg)相对考来烯胺的结合率(%)
    桑树桑黄总三萜1.385 ± 0.07150.93 ± 3.341.422 ± 0.06752.14 ± 4.071.675 ± 0.03443.06 ± 1.71
    考来烯胺2.726 ± 0.043100.00 ± 1.572.734 ± 0.085100.00 ± 3.113.893 ± 0.076100.00 ± 2.02
    下载: 导出CSV
  • [1] 吴声华, 黄冠中, 陈愉萍, 等. 桑黄的分类及开发前景[J]. 菌物研究,2016,14(4):187−200.
    [2] 朱琳, 崔宝凯. 药用真菌桑黄的研究进展[J]. 菌物研究,2016,14(4):201−209.
    [3] 圣明明, 王宏媛, 冯岳琴, 等. 药用真菌桑黄研究进展[J]. 轻工科技,2016,32(12):13−15.
    [4] 刘帅阳, 廖宣宇, 余戎镇, 等. 桑黄提取液抗尿酸活性的研究[J]. 人参研究,2019,31(4):17−20.
    [5] 曹红妹, 胡桂萍, 石旭平, 等. 药用真菌桑黄的研究进展[J]. 蚕业科学,2019,45(2):285−292.
    [6] 李兆坤, 王凤寰, 陈彬, 等. 大型真菌萜类化合物活性研究进展[J]. 天然产物研究与开发,2017,29(2):357−369.
    [7] Zhang J L, Ai L S, Lv T, et al. Asiatic acid, a triterpene, inhibits cell proliferation through regulating the expression of focal adhesion kinase in multiple myeloma cells[J]. Oncology Letters,2013,6(6):1762−1766. doi:  10.3892/ol.2013.1597
    [8] Esimone C O, Eck G, Nworu C S, et al. Dammarenolic acid, a secodammarane triterpenoid from Aglaia sp. shows potent anti-retroviral activity in vitro[J]. Phytomedicine,2010,17(7):540−547. doi:  10.1016/j.phymed.2009.10.015
    [9] Park Y H, Kim Y, Mishra R C, et al. Fungal endophytes inhabiting mountain-cultivated ginseng (Panax ginseng Meyer): Diversity and biocontrol activity against ginseng pathogens[J]. Scientific Reports,2017,7(1):16221. doi:  10.1038/s41598-017-16181-z
    [10] Kim E H, Choi Y S, Kim Y M. Antioxidative and anti-inflammatory effect of Phellinus igniarius on RAW 264.7 macrophage cells[J]. Journal of Exercise Rehabilitation,2019,15(1):2−7. doi:  10.12965/jer.1938010.005
    [11] 梁佳, 孙梦伊, 张腾, 等. 响应曲面法优化桑黄菌丝体中三萜的微波提取工艺[J]. 中国农学通报,2011,27(10):235−238.
    [12] 谢江宁, 宋素芬, 李香, 等. 桑黄总三萜的提取及其体外抗脑胶质瘤U251活性[J]. 中国实验方剂学杂志,2012,18(5):24−26. doi:  10.3969/j.issn.1005-9903.2012.05.009
    [13] 于小凤, 秦庆玲, 李峰, 等. 响应面法优选桑黄总三萜的超声提取工艺[J]. 中国药房,2012,23(47):4455−4458. doi:  10.6039/j.issn.1001-0408.2012.47.15
    [14] 齐欣, 张峻, 陈颖, 等. 六种不同树种桑黄有效成分的比较[J]. 食品科学,2010,31(6):199−201.
    [15] 杨开, 徐梦婷, 王玏萦, 等. 牛樟芝总三萜超声提取及体外活性研究[J]. 核农学报,2018,32(1):112−122. doi:  10.11869/j.issn.100-8551.2018.01.0112
    [16] 许谦. 生产桑黄三萜类化合物液体发酵培养基的优化[J]. 中药材,2016,39(12):2836−2838.
    [17] 于美汇, 赵鑫, 尹红力, 等. 碱提醇沉黑木耳多糖体外和体内降血脂功能[J]. 食品科学,2017,38(1):232−237. doi:  10.7506/spkx1002-6630-201701039
    [18] 刘荣, 王蕾, 栾淑莹, 等. 水溶性黑木耳多糖体外结合胆酸盐能力的分析[J]. 食品工业科技,2015,36(17):358−361.
    [19] Heleno S A, Barros L, Martins A, et al. Chemical composition, antioxidant activity and bioaccessibility studies in phenolic extracts of two Hericium wild edible species[J]. LWT - Food Science and Technology,2015,63(1):475−481. doi:  10.1016/j.lwt.2015.03.040
    [20] Singh P, Singh R, Sati N, et al. Antioxidant and antibacterial activity of Jurinea dolomiaea Boiss extracts[J]. International Journal of Life-Sciences Scientific Research,2015,1(2):74−78.
    [21] Benzie I F F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay[J]. Analytical Biochemistry,1996,239(1):70−76. doi:  10.1006/abio.1996.0292
    [22] 孙熙浛, 齐欣, 崔承弼. 辐照红景天乙醇提取物的抗氧化作用及美白作用研究[J/OL]. 食品工业科技: 1−15[2020-07-30]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200514.1151.011.html.
    [23] 曹卓松, 孙飞龙, 唐薇, 等. 绿咖啡豆绿原酸的体外抗氧化性活性测定[J]. 包装与食品机械,2020,38(2):28−31. doi:  10.3969/j.issn.1005-1295.2020.02.006
    [24] Pawełczyk A, Sowa-Kasprzak K, Olender D, et al. Microwave (MW), ultrasound (US) and combined synergic MW-US strategies for rapid functionalization of pharmaceutical use phenols[J]. Molecules,2018,23(9):2360. doi:  10.3390/molecules23092360
    [25] 白新鹏, 裘爱泳, 方希修. 改进微波装置辅助提取猕猴桃根三萜类化合物的研究[J]. 农业工程学报,2006,22(8):188−193. doi:  10.3321/j.issn:1002-6819.2006.08.040
    [26] 刘爽爽, 王昀睿, 李德海. 粗毛纤孔菌三萜的提取及胆酸盐结合研究[J]. 中南林业科技大学学报,2019,39(10):132−138.
    [27] Zhou S Y, Wu X H, Huang Y X, et al. Microwave-assisted aqueous two-phase extraction of alkaloids from Radix Sophorae Tonkinensis with an ethanol/Na2HPO4 system: Process optimization, composition identification and quantification analysis[J]. Industrial Crops and Products,2018,122:316−328. doi:  10.1016/j.indcrop.2018.06.004
    [28] 段丽萍, 孙炜炜, 苗丽坤, 等. 艾叶总三萜的提取工艺优化及其抑菌活性[J]. 现代食品科技,2020,36(5):88−95.
    [29] 吴玉柱, 崔维建, 李妍. 超声波辅助提取玉木耳多糖及其抗氧化活性分析[J/OL]. 食品工业科技: 1-12[2020-06-16]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200518.1332.012.html.
    [30] 杜学宏, 柴树人. 考来烯胺在高胆固醇血症患者中的应用效果[J]. 中国生化药物杂志,2016,36(5):78−80.
    [31] 胡凯, 黄惠华. 不同茶叶对胆酸盐的结合及其降血脂机理的研究[J]. 食品与发酵工业,2010,36(9):42−45.
    [32] Kang S S C. Evaluation of in vitro free radical scavenging potential of Streptomyces sp. AM-S1 culture filtrate[J]. Saudi Journal of Biological Sciences,2013,20(3):227−233. doi:  10.1016/j.sjbs.2012.12.003
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  12
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要通知

    从2020年12月23日起,若所投稿件的参考文献为中文,则需补充此中文参考文献的英文格式,特此通知。