Extraction of Total Flavonoids in Vegetable Soybean Fermented by Bacillus natto and Evaluation of Its Effect on Lowering Blood Lipid
-
摘要: 本文以菜用大豆等外品为原料,通过纳豆枯草芽孢杆菌发酵来提高其中总黄酮的含量,为提高菜用大豆产品的附加值提供理论支持。实验利用纳豆芽孢杆菌对菜用大豆等外品进行发酵,以发酵产品中总黄酮含量为评价指标确定纳豆发酵的最优条件,通过D101型大孔树脂对提取的总黄酮进行纯化,采用芦丁比色法测定黄酮含量。体内实验分为肥胖预防实验和缓解实验:以C57BJ/6L小鼠为模型,预防实验在饲喂高脂饲料的同时,灌胃总黄酮提取物溶液(50 mg/kg·d);缓解实验是利用高脂饲料建立起肥胖小鼠模型以后,灌胃低、中、高剂量的总黄酮提取物溶液(分别为20、50和100 mg/kg·d)。通过小鼠体重、血脂以及促炎因子等指标评价总黄酮溶液的降脂效果。结果表明,菜用大豆发酵生产黄酮的最佳条件为:枯草芽孢杆菌接菌量为1.15 × 1011 CFU/100 g菜用大豆,发酵温度37 ℃,发酵时间24 h,后熟时间12 h,此时纳豆总黄酮得率为4.30 mg/g菜用大豆;测得该粗提物中黄酮含量为22.1%;预防实验组给予黄酮处理后,小鼠体重和Lee's指数与正常对照组相比均无显著差异。缓解实验中高、中、低剂量黄酮提取物处理组小鼠血清中甘油三酯(TG)含量分别为313.1 ± 10.12、310.39 ± 31.76和310.1 ± 10.20 nmol/L,与正常对照组(330.8 ± 34.36 nmol/L)无显著差异(P>0.05);黄酮各组灌胃干预后,小鼠血清总胆固醇(TC)、白介素-6(IL-6)和肿瘤坏死因子-α(TNF-α)含量均较高脂对照组显著下降(P <0.05)。结论:利用纳豆芽孢杆菌发酵菜用大豆,提高了其中的总黄酮含量,该黄酮提取物具有预防和缓解高脂饮食小鼠血脂升高的效果。Abstract: This paper used vegetable soybeans which were not qualified for export as raw materials to increase total flavonoid yield through Bacillus natto fermentation, thus providing theoretical support for increasing the added value of vegetable soybeans. Bacillus natto was used to ferment vegetable soybeans, and the total flavonoid content in the fermented product was used as criteria to determine the optimal fermentation conditions. The extracted total flavonoids were purified using D101 macroporous resin. The content of total flavonoids was determined by Rutin colorimetric method. The in vivo experiments were divided into obesity preventive and alleviating tests using C57BJ/6L mice. Mice from the preventive experiment were fed high-fat diet while administered flavonoid extracts (50 mg/kg·d) through gavage; in alleviating groups, mice were administered total flavonoid extracts at low, medium and high doses (20, 50, and 100 mg/kg·d, respectively) through gavage after establishing obese mouse model with high-fat diet. The hypolipidemic effect of total flavonoids was evaluated through parameters such as mouse body weight, blood lipids and pro-inflammatory factors. Results showed that the optimal conditions for production of total flavonoids via fermentation of were as follows: Bacillus natto was inoculated at 1.15 × 1011 CFU/100 g vegetable soybeans, then undergone fermentation at 37 ℃ for 24 h and post ripeness for another 12 h. The yield of total flavonoids was 4.30 mg/g vegetable soybean, with the content of flavonoids in the crude extract at 22.1%. In the prevention experiment, there was no significant difference in the weight and Lee's index of the high-fat diet mice after gavage with total flavonoids compared with the normal control group. In the alleviating experiment, the serum triglyceride (TG) content of the mice with high, medium, and low-dose flavonoid extract treatment were 313.1 ± 10.12, 310.39 ± 31.76 and 310.1 ± 10.20 nmol/L, respectively, with no significant difference compared with the normal control group (330.8 ± 34.36 nmol/L) (P>0.05); After intragastric intervention with flavonoids, serum total cholesterol (TC), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels in mice showed a significant decrease compared with that of the higher fat control group (P<0.05). In summary, fermentation using Bacillus natto helped to increase the total flavonoid content in vegetable soybeans. The flavonoid extract showed the effect of both preventing and alleviating mouse hyperlipidemia.
-
表 1 纳豆发酵工艺优化正交实验因素与水平
Table 1. Factors and levels of orthogonal experiment for optimization of natto fermentation process
水平 A发酵时间(h) B接菌量(CFU /100 g) C后熟时间(h) 1 24 5.75 × 1010 6 2 36 1.15 × 1011 12 3 48 1.73 × 1011 18 表 2 纳豆发酵工艺优化正交实验结果
Table 2. Orthogonal experiment result for optimization of natto fermentation process
实验号 A B C Y:总黄酮含量(mg/g) 1 1 1 1 3.34 ± 0.17 2 1 2 2 4.30 ± 0.12 3 1 3 3 3.70 ± 0.24 4 2 1 2 3.66 ± 0.27 5 2 2 3 3.79 ± 0.21 6 2 3 1 2.99 ± 0.21 7 3 1 3 3.30 ± 0.26 8 3 2 1 3.23 ± 0.28 9 3 3 2 2.40 ± 0.26 k1 3.78 3.43 3.19 k2 3.48 3.77 3.45 k3 2.98 3.03 3.59 R 0.80 0.74 0.41 表 3 正交实验方差分析
Table 3. Analysis of orthogonal experimental variance
因素 SS 自由度 F值 Fa A 0.9893 2 3.874 F0.05(2,4) = 6.944 B 0.8294 2 3.248 C 0.2604 2 误差e 0.2503 2 总变异 2.329 表 4 各组小鼠体长及Lee’s指数
Table 4. Body length and Lee’s index of mice in different groups
组别 缓解实验 组别 预防实验 体长(cm) Lee’s指数 体长(cm) Lee’s指数 正常对照组(A) 8.98 ± 0.33a 344.94 ± 5.82b 正常对照组 8.63 ± 0.24a 356.58 ± 3.79b 阳性对照组(B) 8.90 ± 0.23a 349.73 ± 10.19b 阳性对照组 8.31 ± 0.39a 363.58 ± 11.18b 模型组(C) 8.98 ± 0.36a 363.56 ± 18.18a 模型组 8.57 ± 0.62a 382.03 ± 11.15a 总黄酮高剂量组(D) 8.73 ± 0.15a 350.20 ± 7.17b 总黄酮组 8.34 ± 0.38a 362.54 ± 6.76b 总黄酮中剂量组 8.81 ± 0.08a 351.15 ± 4.96b 总黄酮低剂量组(F) 8.84 ± 0.28a 348.65 ± 12.22b 注:表中同一列标记小写字母不同者表示差异显著(p<0.05),表5同。 表 5 缓解实验及预防实验各组小鼠肝脏及脾脏系数
Table 5. Liver and spleen coefficients of mice in alleviating experiment and prevention experiment
组别 缓解试验 组别 预防实验 肝脏指数 脾脏指数 肝脏指数 脾脏指数 正常对照组 3.55 ± 0.13a 0.24 ± 0.03a 正常对照组 3.57 ± 0.39a 2.57 ± 0.25a 阳性对照组 3.73 ± 0.33a 0.27 ± 0.04a 阳性对照组 3.65 ± 0.20a 2.58 ± 0.43a 模型组 3.25 ± 0.37b 0.23 ± 0.05b 模型组 3.38 ± 0.33b 2.46 ± 0.42a 总黄酮高剂量 3.53 ± 0.20a 0.26 ± 0.05a 异黄酮组 3.62 ± 0.11a 2.63 ± 0.19a 总黄酮中剂量组 3.51 ± 0.63a 0.27 ± 0.04a 总黄酮低剂量组 3.58 ± 0.33a 0.26 ± 0.05a -
[1] Gao S, Hu G, Li D, et al. Anti-hyperlipidemia effect of sea buckthorn fruit oil extract through the AMPK and Akt signaling pathway in hamsters[J]. Journal of Functional Foods,2020,66:1736803 doi: 10.1155/2020/1736803 [2] 侯晅, 戴学文, 房志仲. 抗高血脂药物的研究进展[J]. 天津药学,2016,28:59−64. doi: 10.3969/j.issn.1006-5687.2016.04.021 [3] Szliszka E, Bronikowska J, Czuba ZP, et al. Isoflavones augment the effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on prostate cancer cells[J]. 2010,63:182−186. [4] 陈会良, 顾有方. 中草药化学成分与降血脂功能的研究进展[J]. 中国中医药科技,2006,4:287−288. doi: 10.3969/j.issn.1005-7072.2006.04.066 [5] Taniguchi-Fukatsu A, Yamanaka-Okumura H, Naniwa-Kuroki Y, et al. Natto and viscous vegetables in a Japanese-style breakfast improved insulin sensitivity, lipid metabolism and oxidative stress in overweight subjects with impaired glucose tolerance[J]. British Journal of Nutrition,2012,107:1184−1191. doi: 10.1017/S0007114511004156 [6] 王正, 杨青松, 刘露. 大豆黄酮抗氧化及抗癌作用[J]. 生命的化学,2010,30:198−201. [7] 黄琼, 杨杏芬, 李文立, 等. 大豆异黄酮抗大鼠T细胞衰老及抗氧化作用研究[J]. 中国食品卫生杂志,2005,5:407−411. doi: 10.3969/j.issn.1004-8456.2005.05.007 [8] 彭亮, 覃光球. 纳豆的特异性保健功效因子研究进展[J]. 中国食物与营养,2013,19:65−69. doi: 10.3969/j.issn.1006-9577.2013.06.016 [9] Hyun J, Shin SY, So KM, et al. Isoflavones inhibit the clonogenicity of human colon cancer cells[J]. Bioorganic & Medicinal Chemistry Letters,2012,22:2664−2669. [10] Mishra P, Kar A, Kale RK. Prevention of chemically induced mammary tumorigenesis by daidzein in pre-pubertal rats: the role of peroxidative damage and antioxidative enzymes[J]. Molecular & Cellular Biochemistry,2009,325:149−157. [11] Wu AH, Yu MC, Tseng C-C, et al. Epidemiology of soy exposures and breast cancer risk[J]. 2008,98:9−14. [12] Liu XX, Li SH, Chen JZ, et al. Effect of soy isoflavones on blood pressure: A meta-analysis of randomized controlled trials[J]. Nutrition Metabolism & Cardiovascular Diseases,2011,22:463−470. [13] 刘璐璐, 王洲婷, 丁传波, 等. 加工方法对毛豆中大豆异黄酮苷元含量的影响及其对糖尿病小鼠的降血糖降血脂活性研究[J]. 天然产物研究与开发,2014,26:1659−1663. [14] 孙瑞红, 李琨, 滕文丽, 等. 大豆异黄酮对高脂大鼠血脂的影响[J]. 中医药学报,2012,40:50−53. doi: 10.3969/j.issn.1002-2392.2012.04.019 [15] 元振华. 纳豆的制作及营养价值[J]. 农业技术与装备,2017,9:8+10 [16] Pekal A, Pyrzynska K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay[J]. Food Analytical Methods,2014,7:1776−1782. doi: 10.1007/s12161-014-9814-x [17] Zhu HB, Wang YZ, Liu YX, et al. Analysis of Flavonoids in Portulaca oleracea L. by UV-Vis spectrophotometry with comparative study on different extraction technologies[J]. Food Analytical Methods,2010,3:90−97. doi: 10.1007/s12161-009-9091-2 [18] Granato D, Santos JS, Maciel LG, et al. Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices[J]. Trends in Analytical Chemistry,2016,80:266−279. doi: 10.1016/j.trac.2016.03.010 [19] Kishawy ATY, Amer SA, Abd El-Hack ME, et al. The impact of dietary linseed oil and pomegranate peel extract on broiler growth, carcass traits, serum lipid profile, and meat fatty acid, phenol, and flavonoid contents[J]. Asian-Australas Journal of Animal Science,2019,32:1161−1171. doi: 10.5713/ajas.18.0522 [20] Sheih IC, Fang TJ, Wu TK, et al. Effects of fermentation on antioxidant properties and phytochemical composition of soy germ[J]. Journal of the Science of Food and Agriculture,2014,94:3163−3170. doi: 10.1002/jsfa.6666 [21] Moktan B, Saha J, Sarkar PK. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema[J]. Food Research International,2008,41:586−593. doi: 10.1016/j.foodres.2008.04.003 [22] 杜娟, 朱安峰, 宋东明, 等. 高脂饮食诱导的肥胖大鼠肝脏形态学改变及意义[J]. 中华内分泌外科杂志,2019,13:463−465. doi: 10.3760/cma.j.issn.1674-6090.2019.06.005 [23] 吕乃达, 贾晓梅. 脾脏生理功能的中西医比较及认识[J]. 中国中医药现代远程教育,2009,7:5 doi: 10.3969/j.issn.1672-2779.2009.10.004 [24] Aloud AA, Chinnadurai V, Govindasamy C, et al. Galangin, a dietary flavonoid, ameliorates hyperglycaemia and lipid abnormalities in rats with streptozotocin-induced hyperglycaemia[J]. Pharmaceutical Biology,2018,56:302−308. doi: 10.1080/13880209.2018.1474931 [25] 王斯阳. 肺炎克雷伯杆菌感染小鼠白细胞IL-10及其mRNA的变化[D]. 中国医科大学, 2012: [26] Prahalathan P, Saravanakumar M, Raja B. The flavonoid morin restores blood pressure and lipid metabolism in DOCA-salt hypertensive rats[J]. Redox Report,2012,17:167−175. doi: 10.1179/1351000212Y.0000000015 [27] Ma QQ, Cui YL, Xu SY, et al. Synergistic Inhibitory Effects of Acacetin and 11 Other Flavonoids Isolated from Artemisia sacrorum on Lipid Accumulation in 3T3-L1 Cells[J]. Journal of Agricultural and Food Chemistry,2018,66:12931−12940. doi: 10.1021/acs.jafc.8b04683 -