Research Progress of Aptamer Biosensor Detection of Streptomycin in Food
-
摘要: 链霉素(Streptomycin, STR)是一种氨基糖苷类抗生素,广泛用于水产、畜牧业中治疗细菌性疾病。人类食用的动物性食品中若残留过量的STR会严重威胁人体健康。生物传感器作为快速检测技术可以实现食品中STR快速、准确检测,基于适配体的生物传感器因表现出许多独特优势而被广泛用于食品安全检测领域。本文综述了近五年基于适配体的光学、电化学生物传感器在检测动物性食品中STR残留的应用进展,并对这些检测技术进行对比和总结,以期为今后发展更为有效、简便、灵敏的STR生物传感器提供一定的参考。Abstract: Streptomycin (STR) is an aminoglycoside antibiotic widely used in aquaculture and animal husbandry to treat bacterial diseases. Excessive STR in animal foods that humans eat can seriously threaten human health. As a rapid detection technology, biosensors can achieve rapid and accurate detection of STR in foods. Biosensors based on aptamers are widely used in the field of food safety detection because of their unique advantages. In this paper, the application progress of optical and electrochemical biosensors based on aptamers in the detection of STR residue in animal food in the past five years is reviewed, and these detection techniques are compared and summarized, in order to provide some reference for the development of more effective, simple and sensitive STR biosensors in the future.
-
Key words:
- streptomycin /
- aptamer /
- biosensor /
- rapid detection /
- food safety
-
表 1 链霉素光学适配体传感器
Table 1. Streptomycin optical aptamer sensor
表 2 链霉素电化学适配体传感器
Table 2. Streptomycin electrochemical aptamer sensor
检测方法 检测范围 检出限 孵育时间(h) 反应时间(min) 参考文献 基于AuNPs和GQD-SH的电化学适配体传感器 0.1~700 pg/mL 0.033 pg/mL 2 − [47] 基于CNFs和OMC-AuNPs的电化学适配体传感器 0.1~1000 nmol/L 45.0 pmol/L 1 40 [51] 基于MWCNTGr和CNFs-AuNPs纳米复合材料电化学适配体传感器 0.1~100 nmol/L 36.45 pmol/L 1 40 [53] 基于PCNR/GR-Fe3O4-AuNPs纳米复合材料电化学适配体传感器 0.05~200 ng/mL 0.028 ng/mL 2 − [55] 基于Au @ MWCNTs-Fe3O4和NP-PtTi的电化学适配体传感器 0.05~100 ng/mL 7.8 pg/mL − 120 [56] 基于MSFs、金电极和AgNPs的电化学适配体传感器 1 fg/mL~6.2 ng/mL 0.33 fg/mL 2 − [49] 基于Pt-Sn@TiO2复合材料和核酸外切酶的电化学适配体传感器 0.05~1500 nmol/L (0.020±0.0045)nmol/L 1.5 − [48] 基于TiO2/BiOI/BiOBr光电化学适配体传感器 0.05~150 nmol/L 0.04 nmol/L 2 − [63] 基于Mo-BiVO4和石墨烯纳米复合材料光电化学适配体传感器 0.1~100 nmol/L 0.0481 nmol/L − − [60] 基于CdTe量子点和SWCNHs光电化学适配体传感器 0.1~50 nmol/L 0.033 nmol/L 0.67 − [64] 基于双重信号检测的光电化学适配体传感器 0.03~100 μmol/L 10 nmol/L 14 60 [66] 基于LaFeO3@g-C3N4p-n异质 结构光电化学适配体传感器 0.01~10000 nmol/L 0.0033 nmol/L − − [68] 基于CdTe QDs与WO3纳米片光电化学适配体传感器 1.5~728.5 μg/kg 0.5 μg/kg 0.5 − [59] 注:−文中未说明。 -
[1] Lyu Q, Bai K, Kan Y, et al. Variation in streptomycin resistance mechanisms in clavibacter michiganensis[J]. Phytopathology,2019,109(11):1849−1858. doi: 10.1094/PHYTO-05-19-0152-R [2] 陈溪, 曲世超, 黄大亮, 等. 链霉素在动物体内残留和代谢的研究进展[J]. 检验检疫学刊,2015(4):49−51. doi: 10.3969/j.issn.1674-5354.2015.04.013 [3] Klis S, Stienstra Y, Phillips R O, et al. Long term streptomycin toxicity in the treatment of buruli ulcer: Follow-up of participants in the BURULICO drug trial[J]. PLoS Neglected Tropical Diseases,2014,8(3):e2739. doi: 10.1371/journal.pntd.0002739 [4] Codex Alimentarius Commission. Maximumresidue limits for veterinary drugs in food[S]. 2012, 2: 15. [2020-6-15]. http://down.foodmate.net/standard/sort/11/33296.html. [5] 动物性食品中兽药最高残留量注释(续)[J]. 中国猪业, 2010, 5(9): 14-22. [6] Ianni F, Pucciarini L, Carotti A, et al. Hydrophilic interaction liquid chromatography of aminoglycoside antibiotics with a diol-type stationary phase[J]. Analytica Chimica Acta,2018,1044:174−180. doi: 10.1016/j.aca.2018.08.008 [7] Diez C, Guillarme D, Staub spörri A, et al. Aminoglycoside analysis in food of animal origin with a zwitterionic stationary phase and liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta,2015,882:127−139. doi: 10.1016/j.aca.2015.03.050 [8] Du B, Wen F, Guo X, et al. Evaluation of an ELISA-based visualization microarray chip technique for the detection of veterinary antibiotics in milk[J]. Food Control,2019,106:106713. doi: 10.1016/j.foodcont.2019.106713 [9] Du B, Wen F, Zhang Y, et al. Presence of tetracyclines, quinolones, lincomycin and streptomycin in milk[J]. Food Control,2019,100:171−175. doi: 10.1016/j.foodcont.2019.01.005 [10] Zhu Z, Liu G, Wang F, et al. Development of a liquid chromatography tandem mass spectrometric method for simultaneous determination of 15 aminoglycoside residues in porcine tissues[J]. Food Analytical Methods,2016,9(9):2587−2599. doi: 10.1007/s12161-016-0446-1 [11] Wang Y, Li S, Zhang F, et al. Study of matrix effects for liquid chromatography-electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk[J]. Journal of Chromatography A,2016,1437:8−14. doi: 10.1016/j.chroma.2016.02.003 [12] Arsand J B, Jank L, Martins M T, et al. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass Spectrometry[J]. Talanta,2016,154:38−45. doi: 10.1016/j.talanta.2016.03.045 [13] Wang X, Yang S, Li Y, et al. Optimization and application of parallel solid-phase extraction coupled with ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of 11 aminoglycoside residues in honey and royal jelly[J]. Journal of chromatography A,2018,1542:28−36. doi: 10.1016/j.chroma.2018.02.029 [14] 吴有雪, 吴美娇, 田亚晨, 等. 沙门氏菌检测生物传感器研究进展[J]. 食品科学,2021,42(3):339−345. doi: 10.7506/spkx1002-6630-20200209-071 [15] 吴亚, 徐智辉, 张彪, 等. 核酸适配体光学生物传感器在卡那霉素检测中的研究进展[J]. 生物技术通报,2020,36(1):193−201. [16] 王琦, 颜春蕾, 高洪伟, 等. 基于核酸适配体传感器检测食品致病菌的研究进展[J]. 生物技术通报,2020,36(11):245−258. [17] 王嫦嫦, 马良, 刘微, 等. 基于先进材料的适配体传感器在真菌毒素快速检测中的研究进展[J]. 食品科学,2020,41(3):305−313. doi: 10.7506/spkx1002-6630-20190125-330 [18] 张朝阳, 郭磊, 李一林, 等. SELEX与适配体在蛋白质研究中的应用[J]. 医学分子生物学杂志,2008(1):50−54. doi: 10.3870/j.issn.1672-8009.2008.01.012 [19] 李一林, 郭磊, 张朝阳, 等. 适配体探针传感技术进展[J]. 中国科学(B辑: 化学),2008(1):1−11. [20] Sui C J, Zhou Y L, Wang M Y, et al. Aptamer-based photoelectrochemical biosensor for antibiotic detection using ferrocene modified DNA as both aptamer and electron donor[J]. Sensors and Actuators B: Chemical,2018,266:514−521. doi: 10.1016/j.snb.2018.03.171 [21] Marimuthu, Citartan, Thean-Hock, et al. Recent developments of aptasensors expedient for point-of-care (POC) diagnostics[J]. Talanta,2019,199:556−566. doi: 10.1016/j.talanta.2019.02.066 [22] 孙颖颖, 董鹏程, 朱立贤, 等. 食源性致病菌的快速检测研究进展[J]. 食品与发酵工业,2020,46(17):264−270. [23] Lu C, Song G, Lin J-M. Reactive oxygen species and their chemiluminescence-detection methods[J]. Trends in Analytical Chemistry,2006,25(10):985−995. doi: 10.1016/j.trac.2006.07.007 [24] Du B, Li H, Jin J, et al. Chemiluminescence determination of streptomycin in pharmaceutical preparation and its application to pharmacokinetic study by aflow injection analysis assembly[J]. Spectrochimica Acta PartA: Molecularand Biomolecular Spectroscopy,2013,115(11):823−828. [25] Sun Y L, Han R, Dai Y, et al. Highly selective and sensitive streptomycin chemiluminescence sensor based on aptamer and G-quadruplex DNAzyme modified three-dimensional graphene composite[J]. Sensors and Actuators B: Chemical,2019,310:127122. [26] Su M, Chen P, Sun H. Development and analytical application of chemiluminescence with some super normal metal complexes as oxidant[J]. TrAC Trends in Analytical Chemistry,2018,100:36−52. doi: 10.1016/j.trac.2017.11.018 [27] Dai Y, Zhang Y, Liao W, et al. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,2020,238:118406. doi: 10.1016/j.saa.2020.118406 [28] 李庆芝, 周奕华, 陈袁, 等. 比率型碳点荧光传感器检测机理与应用研究进展[J]. 发光学报,2020,41(5):579−591. [29] Taghdisi S M, Danesh N M, Nameghi M A, et al. A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum[J]. Food Chemistry,2016,203:145−149. doi: 10.1016/j.foodchem.2016.02.017 [30] Emrani A S, Danesh N M, Lavaee P, et al. Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles[J]. Food Chemistry,2016,190:115−121. doi: 10.1016/j.foodchem.2015.05.079 [31] Kim S E, Ahn K Y, Park J S, et al. Fluorescent ferritin nanoparticles and application to the aptamer sensor[J]. Analytical Chemistry,2011,83(15):5834−5843. doi: 10.1021/ac200657s [32] Zhong W. Nanomaterials in fluorescence-based biosensing[J]. Analytical and Bioanalytical Chemistry,2009,394(1):47−59. doi: 10.1007/s00216-009-2643-x [33] He X X, Wang K M, Tan W H, et al. A novel fluorescent label based on biological fluores-cent nanoparticles and its application in cell recognition[J]. Chinese Science Bulletin,2001,46(23):1962−1965. doi: 10.1007/BF02901906 [34] 白文荟, 刘金钏, 陈爱亮. 纳米金比色法在食品安全检测中的应用研究进展[J]. 食品安全质量检测学报,2014,5(7):1943−1950. [35] 何芳兰, 李堃杰, 吕雪飞, 等. 基于智能手机的生物传感器及其在即时检测中的应用进展[J]. 航天医学与医学工程,2020,33(1):74−81. [36] Luan Q, Miao Y, Gan N, et al. A POCT colorimetric aptasensor for streptomycin detection using porous silica beads- enzyme linked polymer aptamer probes and exonuclease-assisted target recycling for signal amplification[J]. Sensors and Actuators B: Chemical,2017,251:349−358. doi: 10.1016/j.snb.2017.04.149 [37] Lin B X, Yu Y, Cao Y, et al. Point-of-care testing for streptomycin based on aptamer recognizing and digital image colorimetry by smartphone[J]. Biosensors and Bioelectronics,2018,100:482−489. doi: 10.1016/j.bios.2017.09.028 [38] 李海琴, 张校亮, 谭慷, 等. 基于智能手机数字图片比色法的生化检测技术研究进展[J]. 生命科学仪器,2019,17(1):3−10. [39] Shahdordizadeh M, Taghdisi S M, Ansari N, et al. Aptamer based biosensors for detection of Staphylococcus aureus[J]. Sensors and Actuators B: Chemical,2017,241:619−635. doi: 10.1016/j.snb.2016.10.088 [40] Viswanathan S, Radecka H, Radecki J. Electrochemical biosensors for food analysis[J]. Monatshefte Fur Chemie,2009,140(8):891−899. doi: 10.1007/s00706-009-0143-5 [41] Wei C, Chao Y, Lin C, et al. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates[J]. Biosensors and Bioelectronics,2018,117:845−851. doi: 10.1016/j.bios.2018.07.012 [42] Taghdisi S M, Danesh N M, Emrani A S, et al. A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine[J]. Biosensors and Bioelectronics,2015,73:245−250. doi: 10.1016/j.bios.2015.05.065 [43] Zhang Q, Li L Y, Qiao Z H, et al. Electrochemical conversion of Fe3O4 magnetic nanoparticles to electroactive prussian blue analogues for self-sacrificial label biosensing of avian influenza virus H5N1[J]. Analytical Chemistry,2017,89(22):12145−12151. doi: 10.1021/acs.analchem.7b02784 [44] Zhou J W, Zou X M, Song S H, et al. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues[J]. Journal of Agricultural and Food Chemistry,2018,66(6):1307−1319. doi: 10.1021/acs.jafc.7b05119 [45] Zhao W W, Xu J J, Chen H Y. Photoelectrochemical DNA biosensors[J]. Chemical Reviews,2014,114(15):7421−7441. doi: 10.1021/cr500100j [46] Shu J, Tang D. Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes[J]. Analytical Chemistry,2020,92(1):363−377. doi: 10.1021/acs.analchem.9b04199 [47] Ghanbari K, Roushani M. A novel electrochemical aptasensor for highly sensitive and quantitative detection of the streptomycin antibiotic[J]. Bioelectrochemistry,2018,120:43−48. doi: 10.1016/j.bioelechem.2017.11.006 [48] Li L L, Liu X, Yang L, et al. Amplified oxygen reduction signal at a Pt-Sn-modified TiO2 nanocomposite on an electrochemical aptasensor[J]. Biosensors and Bioelectronics,2019,142:111525. doi: 10.1016/j.bios.2019.111525 [49] Roushani M, Ghanbari K. An electrochemical aptasensor for streptomycin based on covalent attachment of the aptamer onto a mesoporous silica thin film-coated gold electrode[J]. Microchimica Acta,2019,186(2):115. doi: 10.1007/s00604-018-3191-x [50] Amouzadeh Tabrizi M, Shamsipur M, Saber R, et al. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1, 3, 6, 8-pyrenetetrasulfonate[J]. Microchimica Acta,2018,185(1):59. [51] Li F L, Wang X, Sun X, et al. Multiplex electrochemical aptasensor for detecting multiple antibiotics residues based on carbon fiber and mesoporous carbon-gold nanoparticles[J]. Sensors and Actuators B: Chemical,2018,265:217−226. doi: 10.1016/j.snb.2018.03.042 [52] Zhu B, Xu X, Luo J, et al. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC-MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent[J]. Food Chemistry,2019,276:202. doi: 10.1016/j.foodchem.2018.09.152 [53] Li F L, Guo Y, Wang X, et al. Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk[J]. Biosensors and Bioelectronics,2018,115:7−13. doi: 10.1016/j.bios.2018.04.024 [54] Zhang Z, Ji H, Song Y, et al. Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions[J]. Biosensors and Bioelectronics,2017,94:358−364. doi: 10.1016/j.bios.2017.03.014 [55] Yin J L, Guo W J, Qin X, et al. A sensitive electrochemical aptasensor for highly specific detection of streptomycin based on the porous carbon nanorods and multifunctional graphene nanocomposites for signal amplification[J]. Sensors and Actuators B: Chemical,2017,241:151−159. doi: 10.1016/j.snb.2016.10.062 [56] Yin Y, Qin X L, Wang Q C, et al. A novel electrochemical aptasensor for sensitive detection of streptomycin based on gold nanoparticle-functionalized magnetic multi-walled carbon nanotubes and nanoporous PtTi alloy[J]. Rsc Advances,2016,6(45):39401−8. doi: 10.1039/C6RA02029A [57] Li Y J, Ma M J, Zhu J J. Dual-signal amplification strategy for ultrasensitive photoelectrochemical immunosensing of α-fetoprotein[J]. Analytical Chemistry,2012,84 (23):10492−10499. doi: 10.1021/ac302853y [58] Pang X, Bian H, Su M, et al. Photoelectrochemical cytosensing of RAW264.7 macrophage cells based on a TiO2 nanoneedls@MoO3 array[J]. Analytical Chemistry,2017,89(15):7950−7957. doi: 10.1021/acs.analchem.7b01038 [59] Liu D, Xu X, Shen X, et al. Construction of the direct Z-scheme CdTe/APTES-WO3 heterostructure by interface engineering for cathodic “signal-off ” photoelectrochemical aptasensing of streptomycin at sub-nanomole level[J]. Sensors and Actuators B: Chemical,2020:305. [60] Okoth O K, Yan K, Zhang J. Mo-doped BiVO4 and graphene nanocomposites with enhanced photoelectrochemical performance for aptasensing of streptomycin[J]. Carbon,2017,120:194−202. doi: 10.1016/j.carbon.2017.04.079 [61] Peng J, Huang Q, Liu Y, et al. Photoelectrochemical sensor based on composite of CdTe and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin[J]. Sensors and Actuators B: Chemical,2019,294:157−165. doi: 10.1016/j.snb.2019.05.047 [62] Wang Y, Gao C, Ge S, et al. Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching[J]. Biosensors and Bioelectronics,2016,85:205−211. doi: 10.1016/j.bios.2016.05.015 [63] Luo Y N, Tan X, Young D J, et al. A photoelectrochemical aptasensor for the sensitive detection of streptomycin based on a TiO2/BiOI/BiOBr heterostructure[J]. Analytica Chimica Acta,2020,1115:33−40. doi: 10.1016/j.aca.2020.04.021 [64] Xu X X, Liu D, Luo L, et al. Photoelectrochemical aptasensor based on CdTe quantum dots-single walled carbon nanohorns for the sensitive detection of streptomycin[J]. Sensors and Actuators B: Chemical,2017,251:564−571. doi: 10.1016/j.snb.2017.04.168 [65] Dai H, Zhang S, Hong Z, et al. Enhanced photoelectrochemical activity of a hierarchical-ordered TiO2 mesocrystal and its sensing application on a carbon nanohorn support scaffold[J]. Analytical Chemistry,2014,86(13):6418−6424. doi: 10.1021/ac500813u [66] Shen X L, Liu D, Zhu C X, et al. Photoelectrochemical and electrochemical ratiometric aptasensing: A case study of streptomycin[J]. Electrochemistry Communications,2020:110. [67] Jiang W, Zong X, An L, et al. Consciously constructing heterojunction or direct Z-scheme photocatalyst by regulating electron flow direction[J]. ACS Catalysis,2018,8(3):2209−2217. doi: 10.1021/acscatal.7b04323 [68] Xu Y H, Ding L J, Wen Z R, et al. Core-shell LaFeO3@g-C3N4 p-n heterostructure with improved photoelectrochemical performance for fabricating streptomycin aptasensor[J]. Applied Surface Science,2020:511. [69] Tang L, Ouyang X L, Peng B, et al. Highly sensitive detection of microcystin-LR under visible light using a self-powered photoelectrochemical aptasensor based on a CoO/Au/g-C3N4 Z-scheme heterojunction[J]. Nanoscale,2019,11(25):12198−12209. doi: 10.1039/C9NR03004B [70] Low J, Yu J, Jaroniec M, et al. Heterojunction photocatalysts[J]. Advanced Materials,2017,29(20):1601694. -