Analysis of Different Proteins Affecting Water Holding Capacity of Pork Based on Microstructure and Proteomics
-
摘要: 为探究宰后初期生鲜猪肉肌细胞微观结构和蛋白质组变化对持水能力的影响,将猪背最长肌样品按照汁液流失的高低分为高汁液流失组(High drip loss group≥5.93%, H组, n=3)和低汁液流失组(Low drip loss group≤0.81%, L组, n=3),对两组样品的微观结构和蛋白质组进行比较。采用透射电镜(Transmission Electron Microscopy, TEM)观测细胞间隙,并用多肽体外标记技术(Tandem Mass Tag, TMT)鉴定高低汁液流失组间的差异蛋白。结果表明,宰后24 h时,H组的细胞外间隙极显著大于L组的细胞外间隙(P<0.01)。宰后肌肉中葡萄糖磷酸变位酶-1、热休克蛋白70(Heat shock protein 70, Hsp70)、锚蛋白、硒蛋白W和层黏连蛋白的表达量越高,汁液流失越低,持水性越好,而磷酸甘油变位酶和转酮醇酶的表达量越高,汁液流失越高,持水性越差。Abstract: In order to investigate the effects of microstructural and proteomic changes of fresh pork on their water holding capacity in the early postmortem period, the longissimus dorsi samples of pigs were divided into high drip loss group (H-group≥5.93%, n=3) and low drip loss group (L-group≤0.81%, n=3) according to the level of drip loss. The microstructure and proteomics of the two groups were compared. The difference proteins between the two groups were identified using Tandem Mass Tag (TMT) and intercellular spaces were observed using electron microscopy. The results showed that the extracellular space of H-group was significantly larger than that of L-group at 24 h after slaughter(P<0.01). The higher the expression level of glucose-phosphotransferase-1, heat shock protein 70 (Hsp70), ankyrin, selenoprotein W and laminin in postmortem muscle, the lower the drip loss and the better the water holding capacity, while the higher the expression level of phosphoglycerate mutase and transketolase, the higher the drip loss and the worse the water holding capacity.
-
Key words:
- pork /
- proteomics /
- drip loss /
- biological metabolism /
- transketolase
-
表 1 宰后存放在4 ℃下9 和24 h的H组与L组的样品的肉质指标
Table 1. Meat quality indicators of samples in the H-group and L-group after slaughter at 4 ℃ for 9 and 24 h
指标 汁液流失率 L组(n=3) H组(n=3) 汁液流失率(%) 0.81 ± 0.14 5.93 ± 0.22** 肌间脂肪(%) 3.26 ± 0.06 3.01 ± 0.05* pH9 h 5.74 ± 0.12 5.52 ± 0.01* pH24 h 5.78 ± 0.07 5.62 ± 0.03 温度9 h(℃) 7.03 ± 0.07 7.13 ± 0.86 温度24 h(℃) 6.03 ± 1.35 7.08 ± 0.56** 细胞内间隙9 h 0.32 ± 0.10 0.39 ± 0.11 细胞内间隙24 h 0.54 ± 0.26 0.66 ± 0.29 细胞外间隙9 h 2.39 ± 1.25 2.93 ± 0.65 细胞外间隙24 h 2.43 ± 0.74 5.21 ± 1.39** 注:*表示L组与H组组间差异显著,P<0.05;**表示L组与H组组间差异极显著,P<0.01;细胞内间隙和细胞外间隙单位为微米(μm)。 表 2 宰后背最长肌中细胞内外间隙与汁液流失率的相关性
Table 2. Correlation between intracellular and extracellular spaces and drip loss rate in the longissimus dorsi muscle
细胞内间隙 细胞外间隙 时间(h) 9 24 9 24 汁液流失率(%) 0.536 0.804 0.598 0.882* 注:*表示在0.05 水平(双侧)上显著相关。 表 3 宰后9 h和24 h高低汁液流失组存在显著差异的57个蛋白
Table 3. 57 proteins with significant differences in high and low drip loss groups were identified at 9 h and 24 h postmortem
蛋白检索号a 蛋白质名称a 基因检索号a 物种a 蛋白得分/肽段 质谱得分(%) 差异倍数 9 h 24 h F1SRI8 肌球蛋白结合蛋白C MYBPC1 Sus scrofa 323.31/69 62.4 1.32b 1.22c F1RZM4 层粘连蛋白亚基α4 LAMA4 Sus scrofa 52.118/5 0.042 1.08c 1.21c B5KJG2 磷酸甘油酸酯变位酶 PGAM2 Sus scrofa 323.31/18 63.6 1.21b 1.24b F1S814 葡萄糖磷酸变位酶1 PGM1 Sus scrofa 323.31/30 56.6 1.34c 1.23c A0A287ARW1 肌钙蛋白T TNNT3 Sus scrofa 11.937/21 45.1 1.23c 1.35b A0A287BHG2 肌钙蛋白T TNNT3 Sus scrofa 323.31/21 47.3 1.61b 1.15b Q6S4N2 热休克蛋白70 HSPA1B Sus scrofa 323.31/23 44.3 1.21c 1.19c A0A287ANE3 LIM和衰老细胞含抗原样结构域蛋白 MYOM3 Sus scrofa 323.31/26 25.6 1.35c 1.01c I3LIE7 结合蛋白H MYBPH Sus scrofa 323.31/16 50.7 1.72c 1.10c F2Z5S8 微管蛋白α链 TUBA4A Sus scrofa 278.04/15 47 1.25c 1.11c P43368 钙蛋白酶-3 CAPN3 Sus scrofa 225.79/19 30.2 1.22c 1.21c K7GQ48 巨球蛋白α2 A2M Sus scrofa 170.36/17 15.1 1.22b 1.14b I3LN42 维生素D结合蛋白 GC Sus scrofa 267.86/11 28.5 1.24b 1.04b A0A287BTD0 LIM和衰老细胞含抗原样结构域蛋白 LIMS1 Sus scrofa 25.352/3 11.4 1.33c 1.03 P01846 链C区域 N/A Sus scrofa 141.98/5 73.3 1.58b 1.13b I3L9X0 冠蛋白 CORO6 Sus scrofa 80.9/5 14.3 1.29b 1.01c F1S431 丙氨酰 AARS Sus scrofa 25.266/4 4.9 1.21b 1.02b F2Z4Y0 小核核糖核蛋白 SNRPD3 Sus scrofa 25.11/2 23.8 1.20c 1.04c P36968 磷脂过氧化氢谷胱甘肽过氧化物酶 GPX4 Sus scrofa 19.056/3 14.7 1.49c 1.66c Q29197 40号核糖体蛋白 RPS9 Sus scrofa 17.985/3 18.5 3.26b / I3L804 酪氨酸- tRNA连接酶 YARS Sus scrofa 17.626/3 7.2 1.20b 1.12b I3LB80 溶质载体家族3成员2 SLC3A2 Sus scrofa 39.458/3 7.8 1.53c 1.35b K7GRK7 腱生蛋白-X TNXB Sus scrofa 31.477/3 1.8 1.95b / Q07717 微球蛋白β2 B2M Sus scrofa 12.148/2 16.9 1.28b / F1RQC1 具有序列相似性的家族114成员A2 FAM114A2 Sus scrofa 15.059/2 6.4 1.35c 1.35b F2Z5N9 蛋白质回力球同族体 PELO Sus scrofa 14.704/2 6.8 1.22b 1.47b Q95KL4 硒蛋白W SELENOW Sus scrofa 11.99/2 24.1 3.55c 2.74c A0A287A781 中心体蛋白85 CEP85 Sus scrofa 6.7513/1 1 1.73b / A0A287A816 磷脂磷酸酶7(非活性) PLPP7 Sus scrofa 6.4318/1 6.3 1.90b 1.24b F1RN28 旁斑区域1 PSPC1 Sus scrofa 9.2318/1 5.9 1.46b 1.47b I3LPU8 异质核核糖核蛋白L HNRNPL Sus scrofa 6.4381/1 4 1.38b 1.08c F1SSL4 ATP结合区域 ABCF2 Sus scrofa 104.22/3 5.8 1.03b 1.37b A0A287BI36 PDZ和LIM区域5 PDLIM5 Sus scrofa 59.067/7 38.3 1.07b 1.37c F1SAW8 肌集钙蛋白 CASQ2 Sus scrofa 40.941/2 6.8 1.31b 1.35b F1RYZ1 跨膜四蛋白 CD151 Sus scrofa 91.064/1 3.2 1.04b 1.23c F2Z5N9 蛋白质回力球同族体 PELO Sus scrofa 74.392/2 5 1.22b 1.47b A0A286ZTL8 层粘连蛋白β2 LMNB2 Sus scrofa 56.139/5 9.1 1.02c 1.26c P62844 40S核糖体蛋白 RPS1 Sus scrofa 45.28/2 9 1.13b 1.78b A0A287B3D6 支链氨基酸氨基转移酶 BCAT2 Sus scrofa 125.22/2 9.1 1.08b 1.30b A0A287ACR8 N(α)-乙酰转移酶50,NatE催化亚基 NAA50 Sus scrofa 34.773/2 14.3 1.02b 1.39b F1RJ93 转凝蛋白 TAGLN2 Sus scrofa 90.15/3 18.1 1.06b 1.06b D6QST6 2,4-dienoyl-CoA还原酶1 DECR1 Sus scrofa 58.699/2 5.18 1.25b 1.34b F1SKI0 肌球蛋白-11 MYH11 Sus scrofa 58.433/5 3.2 1.07c 1.49c A0A287AAD5 Alpha-1B-糖蛋白α1 A1BG Sus scrofa 59.067/4 9.2 1.36b 1.23c F1RLL9 IV型- 2型胶原链 COL4A2 Sus scrofa 49.715/4 3.1 1.05b 1.26b A0A287B1F9 溶质载体家族12名成员2 SLC12A2 Sus scrofa 110.08/1 1 1.05c 1.23b A0A286ZLW9 磷酸肌醇磷脂酶C PLCL2 Sus scrofa 29.58/1 1.6 1.14b 1.05c P43368 钙蛋白酶-3 CAPN3 Sus scrofa 96.299/9 14.3 1.22c 1.21b A5A8V7 热休克蛋白70 HSPA1L Sus scrofa 55.353/8 12.5 1.07c 4.70c D2ST34 富亮氨酸重复蛋白4 FBXL4 Sus scrofa 446.001/1 1.6 / 2.73b F1SJ30 6-磷酸甘露糖异构酶 MPI Sus scrofa 45.433/5 17.5 1.23b 1.23b A0A287BEP2 锚蛋白1 ANK1 Sus scrofa 79.809/1 0.6 / 1.32c I3LB80 溶质载体家族3成员2 SLC3A2 Sus scrofa 48.091/2 5.2 2.64b 3.30c A0A287A5C9 信号转换器和转录激活器 STAT1 Sus scrofa 46.88/2 4.3 2.59b 2.77c A8U4R4 转酮醇酶 TKT Sus scrofa 74.533/1 1.4 2.50b 1.60b 注:a: 从Uniprot数据库中提取蛋白序列、蛋白名称和基因;b: H组质谱峰面积度与L组质谱峰面积 的比值,即该蛋白在H组中的表达量高;c: L组质谱峰面积度与H组质谱峰面积的比值,即该蛋白在L组中的表达量高。 -
[1] Diniz W J, Banerjee P, Regitano L C, et al. Cross talk between mineral metabolism and meat quality: A systems biology overview[J]. Physiological Genomics,2019,51(11):529−538. doi: 10.1152/physiolgenomics.00072.2019 [2] 肖智超, 王桂瑛, 王雪峰, 等. 云南盐津乌骨鸡与武定鸡肌肉蛋白质组学差异研究[J]. 食品工业科技,2019,40(16):102−106, 117. [3] 马静, 武开乐, 库西塔别克·买买提依不拉音, 等. iTRAQ技术在动物生产中的应用[J]. 中国细胞生物学学报,2017,39(12):1599−1604. [4] 金绍明, 宁霄, 曹进, 等. 非标记蛋白定量方法在掺假肉鉴别中的应用[J]. 食品安全质量检测学报,2019,10(1):71−74. doi: 10.3969/j.issn.2095-0381.2019.01.012 [5] 牟永颖, 顾培明, 马博, 等. 基于质谱的定量蛋白质组学技术发展现状[J]. 生物技术通报,2017,33(9):73−84. [6] 赵雅娟, 苏琳, 尹丽卿, 等. 蛋白质组学技术在肉品质中的研究进展[J]. 食品工业,2016,37(4):233−236. [7] Lee S H, Kim J M, Ryu Y C, et al. Effects of morphological characteristics of muscle fibers on porcine growth performance and pork quality[J]. Korean Journal for Food Science of Animal Resources,2016,36(5):583−593. doi: 10.5851/kosfa.2016.36.5.583 [8] 杨汝男, 李燕清, 陈韬. 宰后猪最长肌踝蛋白降解与汁液流失的关系[J]. 食品工业科技,2018,39(20):12−17. [9] Wang Z, He F, Rao W, et al. Proteomic analysis of goat longissimus dorsi muscles with different drip loss values related to meat quality traits[J]. Food Science & Biotechnology,2016,25(2):425−431. [10] Pas M F W T, Kruijt L, Pierzchala M, et al. Identification of proteomic biomarkers in longissimus dorsi as potential predictors of pork quality[J]. Meat Science,2013,95(3):679−687. doi: 10.1016/j.meatsci.2012.12.015 [11] Luca A D, Mullen A M, Elia G, et al. Centrifugal drip is an accessible source for protein indicators of pork ageing and water-holding capacity[J]. Meat Science,2011,88(2):261−270. doi: 10.1016/j.meatsci.2010.12.033 [12] Gap-Don, Kim, Jin-Yeon, et al. Differential abundance of proteome associated with intramuscular variation of meat quality in porcine longissimus thoracis et lumborum muscle[J]. Meat Science,2019:85−95. [13] Sandberg A, Brance R M, Lehtio J, et al. Quantitative accuracy in mass spectrometry based proteomics of complex samples: The impact of labeling and precursor interference[J]. Journal of Proteomics,2014:133−144. [14] Warner R D, Kaufman R G, Greaser M L. Muscle protein changes post mortem in relation to pork quality traits[J]. Meat Science,1997,45(3):339−352. doi: 10.1016/S0309-1740(96)00116-7 [15] Florowski T, Pisula A, Rola M, et al. Comparison of meatiness and the technological quality of pork from Polish Pulawy breed and its crosses with Polish Large White and Polish Landrace pigs[J]. Meat Science,2008,64(5):673−676. [16] Honikel K O. Reference methods for the assessment of physical characteristics of meat[J]. Meat Science,1998,49(4):447−457. doi: 10.1016/S0309-1740(98)00034-5 [17] Luo X, Zhu Y, Zhou G. Electron microscopy of contractile bands in low voltage electrical stimulation beef[J]. Meat Science,2008,80(3):948−951. doi: 10.1016/j.meatsci.2008.03.017 [18] 吴霜, 陈韬, 张冬怡, 等. 猪屠宰后正常肉与PSE肉中整联蛋白变化与持水性的相关性[J]. 食品工业科技,2015,36(21):64−67, 72. [19] Schäfer A, Rosenvold K, Purslow P. Physiological and structural events post mortem of importance for drip loss in pork[J]. Meat Science,2002,61(4):355−366. doi: 10.1016/S0309-1740(01)00205-4 [20] 雄安秀. 锚蛋白研究进展[J]. 国外医学(儿科分册),2003(3):159−161. [21] Aslan O, Hamill R M, Mullen A M, et al. Association between promoter polymorphisms in a key cytoskeletal gene (Ankyrin 1) and intramuscular fat and water-holding capacity in porcine muscle[J]. Molecular Biology Reports,2012,39(4):3903−3914. doi: 10.1007/s11033-011-1169-4 [22] 王州. 基于重测序研究贵州地方住猪种基因组拷贝数变异[D]. 贵阳: 贵州大学, 2019. [23] Ceasar A, Regitano L C, Koltes J E, et al. Putative regulatory factors associated with intramuscular fat content[J]. Plos One,2015,10(6):1−21. [24] Watanabe G, Motoyama M, Nakajima I, et al. Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin[J]. Asian Journal of Animal Sciences,2017,31(6):914−918. [25] 宋林霞, 徐振彪. 磷酸甘油酸变位酶[J]. 生命的化学,2011(1):90−93. [26] Koning D, Harlizius B, Rattink A P, et al. Detection and characterization of quantitative trait loci for meat quality traits in pigs[J]. Journal of Animal Science,2001,79(11):2812−2819. doi: 10.2527/2001.79112812x [27] Yang H, He J, Wei W, et al. The c. −360 T>C mutation affects PGAM2 transcription activity and is linked with the water holding capacity of the longissimus lumborum muscle in pigs[J]. Meat Science,2016,122(12):139−144. [28] Prejano M, Medinal F E, Fernandes P A, et al. The catalytic mechanism of human transketolase[J]. Chem Phys Chem,2019,20(21):2881−2886. doi: 10.1002/cphc.201900650 [29] Kochetov G A. et al. Structure and functioning mechanism of transketolase[J]. Proteins & Proteomics,2014,61(12):59−68. [30] 谢华. 冷却猪肉汁液流失及控制研究[D]. 杨凌: 西北农林科技大学, 2006. [31] Trocino A, Zomeno C, Birolo M, et al. Impact of pre-slaughter transport conditions on stress response, carcass traits, and meat quality in growing rabbits[J]. Meat Science,2018:68−74. [32] Hu H, Chen L, Dai S, et al. Effect of glutamine on antioxidant capacity and lipid peroxidation in the breast muscle of heat-stressed broilers via antioxidant genes and Hsp70 pathway[J]. Animals,2020,10(3):404. doi: 10.3390/ani10030404 [33] Wei Y, Li X, Zhang D, et al. Comparison of protein differences between high-and low-quality goat and bovine parts based on iTRAQ technology[J]. Food Chemistry,2019,289(AUG. 15):240−249. [34] Traore S, Aubry L, Gatellier P, et al. Higher drip loss is associated with protein oxidation[J]. Meat Science,2011,90(4):917−924. [35] Liu Z, Xiong Y L, Chen J. Protein oxidation enhances hydration but suppresses water-holding capacity in porcine longissimus muscle[J]. Journal of Agricultural & Food Chemistry,2010,58(19):10697−10704. [36] Jeong D W, Kim E H, Kim T S, et al. Different distributions of selenoprotein W and thioredoxin during postnatal brain development and embryogenesis[J]. Molecules and Cells,2004,17(1):156−159. [37] Li Jungang. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs feed selenium-enriched yeast[J]. Meat Science,2011,13(1):101−112. [38] Zhang M, Wang D, Xu X, et al. Comparative proteomic analysis of proteins associated with water holding capacity in goose muscles[J]. Food Research International,2019:354−361. -