Optimization of the Compounding Formula of Food Gums in Pork Sausage by Response Surface Method
-
摘要: 为了研究添加不同种类食用胶及其复配比例对猪肉肠出品率、保水率和感官品质的影响。本文以猪肉肠为试验对象,以亚麻籽胶、瓜尔豆胶和魔芋胶3种食用胶的复配比例为试验因素,在单因素实验基础之上,以出品率、保水率和感官评分为响应值,利用响应面(Box-Behnken)中心组合法进行三因素三水平的响应面优化猪肉肠中食用胶复配配方试验。结果表明,3种食用胶的最佳复配比例为:亚麻籽胶添加量0.50%、瓜尔豆胶添加量0.40%、魔芋胶添加量0.65%,所得猪肉肠出品率为98.97%、保水率为90.26%、感官评分为8.14,产品弹性较好,整体可接受度较高且优化所得结果准确可靠,可为猪肉肠加工工艺研究和品质提升提供数据支持和理论参考。Abstract: In order to study the effects of adding different kinds of edible gums and its compound ratio on the product rate, water retention rate and sensory quality of pork sausage products, and obtain the best edible gum compound ratio. The pork sausage was used as the experimental object, and the mixture ratio of flaxseed gum, guar gum and konjac gum were used as the experimental factors. On the basis of single-factor test, Box-Behnken central group method was used to conduct three-factor and three-level response surface analysis test with product rate, water retention rate and the sensory score as response values. The results showed that the best mix proportion of the three kinds of edible gum were: flaxseed gum 0.50%, guar gum 0.40%, konjac gum 0.65%, the pork sausage product rate was 98.97%, and water retention rate was at a rate of 90.26% and the sensory score was 8.14 as well as the product had good elasticity and high overall acceptable degree. Meanwhile, the optimization results were accurate and reliable test, and may provide data support and theoretical reference for pork sausage processing technology research and quality.
-
Key words:
- pork sausage /
- edible gum /
- mixed proportion /
- response surface optimization /
- product rate /
- water retention rate /
- sensory quality
-
表 1 响应面试验因素水平表
Table 1. Factor and level table of response surface test
水平 亚麻籽胶添加量(%)(A) 瓜尔豆胶添加量(%)(B) 魔芋胶添加量(%)(C) −1 0.3 0.2 0.65 0 0.4 0.3 0.75 1 0.5 0.4 0.85 表 2 Box-Behnken响应面试验设计结果
Table 2. The results of Box-Behnken response surface test design
试验序号 亚麻籽胶
添加量(A)瓜尔豆胶
添加量(B)魔芋胶
添加量(C)响应值(Y) 出品率
(Y1)保水率
(Y2)感官评分
(Y3)1 −1 −1 0 95.63 89.5 8.49 2 1 −1 0 96.12 91.26 8.26 3 −1 1 0 95.34 90.24 8.30 4 1 1 0 97.95 89.83 8.45 5 −1 0 −1 96.31 90.49 8.5 6 1 0 −1 98.50 90.89 8.37 7 −1 0 1 95.21 90.55 8.38 8 1 0 1 95.18 91.56 8.46 9 0 −1 −1 95.82 90.33 8.46 10 0 1 −1 96.79 91.21 8.33 11 0 −1 1 94.77 91.00 8.44 12 0 1 1 95.52 89.71 8.34 13 0 0 0 96.23 90.89 8.40 14 0 0 0 96.49 90.51 8.38 15 0 0 0 96.02 90.48 8.42 16 0 0 0 95.79 90.28 8.41 17 0 0 0 95.79 90.24 8.37 表 3 回归模型的方差分析
Table 3. Variance analysis of regression models
指标 变异来源 自由度 平方和 均方 F值 P值 显著性 出品率(%) 模型 9 13.66 1.52 10.35 0.0028 ** 残差 7 1.03 0.15 失拟项 3 0.67 0.22 2.46 0.2026 误差 4 0.36 0.09 总差 16 14.69 保水率(%) 模型 6 3.55 0.59 3.99 0.0266 * 残差 10 1.48 0.15 失拟项 6 1.22 0.20 3.04 0.1506 误差 4 0.27 0.067 总差 16 5.04 感官评分 模型 6 0.056 9.379E-004 6.59 0.049 ** 残差 10 0.014 1.423E-003 失拟项 6 0.013 2.085E-003 4.85 0.0742 误差 4 1.72E-003 4.3E-004 总差 16 5.04 注:*表示差异显著,P<0.05;**表示差异极显著,P<0.01;表4同。 表 4 不同试验因素回归系数检验
Table 4. Test of regression coefficients of different test factors
模型项 出品率 保水率 感官评分 均方 F值 P值 显著性 均方 F值 P值 显著性 均方 F值 P值 显著性 A-亚麻籽胶 3.46 23.58 0.0018 ** 0.95 6.42 0.0297 * 2.112E-003 1.48 0.2510 B-瓜尔豆胶 1.33 9.06 0.0197 * 0.15 1.02 0.3363 6.612E-003 4.65 0.0565 C-魔芋胶 5.68 38.71 0.0004 ** 1.250E-003 8.429E-003 0.9287 2.000E-004 0.14 0.7156 AB 1.12 7.66 0.0278 * 1.18 7.94 0.0182 * 0.036 25.37 0.0005 ** AC 1.23 8.40 0.0230 * 0.093 0.63 0.4467 0.011 7.75 0.0193 * BC 0.012 0.082 0.7823 1.18 7.94 0.0182 * 2.250E-004 0.16 0.6993 A2 0.63 4.27 0.0778 B2 0.15 1.03 0.3438 C2 0.094 0.64 0.4495 -
[1] Oliveira R F D, Henry F D C, Valle F D. Effect of the fruit aqueous extract of Brazilian pepper tree (Schinus terebinthifolius, Raddi) on selected quality parameters of frozen fresh pork sausage[J]. Journal of Agriculture and Food Research,2020(2):1−6. [2] Rather S A, Masoodi F A, Akhter R, et al. Effects of guar gum as fat replacer on some quality parameters of mutton goshtaba, a traditional Indian meat product[J]. Small Ruminant Research,2016,137:169−176. doi: 10.1016/j.smallrumres.2016.03.013 [3] 樊丽岩, 曹琪, 高鹏飞, 等. 亚麻籽粉粕和食用胶对猪肉灌肠质构的影响[J]. 肉类研究,2017,31(5):16−20. [4] 赵改名, 孟子晴, 祝超智, 等. 不同食用胶与肉糜结合力的比较及对牛肉凝胶性能的影响研究[J]. 现代食品科技,2020,36(4):1−8. [5] 孙健. 亚麻卫胶对肉制品保水性、乳化性、淀粉糊化和老化特性影响及其应用[D]. 南京: 南京农业大学, 2011. [6] 曲金萍, 陈金玉, 张亚杰, 等. 玉米淀粉与食用胶共混体系理化性质的研究[J]. 食品工业科技,2019,40(10):1−5. [7] 程春梅. 淀粉, 大豆蛋白和食用胶在肉制品加工中的应用[J]. 肉类工业,2008,6(8):46−47. doi: 10.3969/j.issn.1008-5467.2008.08.013 [8] 扶庆泉, 周红霞, 曾华. 卡拉胶的复配特性及其在低温火腿中的应用[J]. 中国食品添加剂,2010,6(6):213−216. doi: 10.3969/j.issn.1006-2513.2010.06.036 [9] 赵百忠, 董晓波, 张骞. 黄原胶在火腿肠中应用技术研究[J]. 肉类工业,2011,8(3):36−37. doi: 10.3969/j.issn.1008-5467.2011.03.011 [10] 赵谋明, 杨园媛, 孙为正, 等. 魔芋胶, 瓜尔豆胶对猪肉脯品质的影响[J]. 现代食品科技,2014,30(3):121−126. [11] 孙健, 王鹏, 徐幸莲, 等. 猪肉肠中亚麻籽胶, 卡拉胶, 黄原胶的相互作用的研究[J]. 食品科学,2012,33(13):134−139. [12] 高雪琴. 大豆分离蛋白和卡拉胶复配对调理猪肉制品品质的影响及机理研究[D]. 南京: 南京农业大学, 2015. [13] 邓梦琦, 陈志奇, 冯雨, 等. 五香油鸽的炸制工艺优化[J]. 现代食品科技,2020,36(8):225−233. [14] 孙健, 冯美琴, 王鹏, 等. 亚麻籽胶, 黄原胶与大豆分离蛋白对肉制品出品率和质构特性的影响[J]. 食品科学,2012,33(25):1−5. [15] Shand P J. Textural, water holding, and sensoy properties of low-fat pork bologna with normal or waxy starch huii-less barley[J]. Journal of Food Science,2000,65:101−107. doi: 10.1111/j.1365-2621.2000.tb15963.x [16] 李俊. 赖氨酸和精氨酸分别对猪肉肠品质特性影响的研究[J]. 安徽: 合肥工业大学, 2013. [17] Chen H H, Xu S Y, Wang Z. Interaction between flaxseed gum and meat protein[J]. Journal of Food Engineering,2007,80(4):1051−1059. doi: 10.1016/j.jfoodeng.2006.08.017 [18] Defreitas Z, Sebranek J G, Olson D G, et al. Carrageenan effects on thermal stability of meat proteins[J]. Journal of Food Science,1997,62(3):544−547. doi: 10.1111/j.1365-2621.1997.tb04426.x [19] Foegeding E A, Ramsry S R J. Rheological and water-holding properties of gelled meat batters containing iota carrageenan, kappa carrageeaner xanthan gum[J]. Journal of Food Science,1987,187(52):549−553. [20] 陈志刚, 赵百忠, 陈涛. 亚麻籽胶在盐水火腿中的应用研究[J]. 肉类研究,2015(9):40−43. [21] 张晓冬, 史峰山, 杜平, 等. 亚麻籽胶在斩拌型肉肠中的应用研究[J]. 食品科学,2003,24(11):88−91. doi: 10.3321/j.issn:1002-6630.2003.11.019 [22] Rather S A, Masoodi F A, Akhter R, et al. Effects of guar gum as a fat substitute in low fat meat emulsions[J]. Journal of Food Processing and Preservation,2016:1−9. [23] Ulu H. Effects of carrageenan and guar gum on the cooking and textual properties of low fat meatballs[J]. Food Chemistry,2006,95:600−605. doi: 10.1016/j.foodchem.2005.01.039 [24] 顾振东, 刘晓艳. 瓜尔豆胶的生产及其应用研究进展[J]. 广西轻工业,2010(7):1−13. doi: 10.3969/j.issn.1003-2673.2010.07.001 [25] Mahfoudhi N, Sessa M, Chouaibi M, et al. Assessment of emulsifying ability of almond gum in comparison with gum Arabic using response surface methodology[J]. Food Hydrocolloids,2014,37(3):49−59. [26] 黄明发, 鲁兴容, 刁兵, 等. 魔芋胶的功能特性及其在肉制品中的应用[J]. 中国食品添加剂,2012(1):186−190. doi: 10.3969/j.issn.1006-2513.2012.01.026 [27] 周春丽, 米力, 胡雪雁, 等. 响应面法优化南瓜红枣复合运动饮料工艺研究[J]. 食品工业,2017,38(7):124−127. [28] Zhang Y, Liu Z, Li Y, et al. Optimization of ionic liquid-based microwave-assisted extraction of isoflavones from Radix puerariae by response surface methodology[J]. Separation and Purification Technology,2014,135(1):71−79. [29] Filip S, Pavlić B, Vidović S, et al. Optimization of microwave-assisted extraction of polyphenolic compounds from Ocimum basilicum by response surface methodology[J]. Food Analytical Methods,2017,10:2270−2280. doi: 10.1007/s12161-017-0792-7 [30] He H J, Wang Y M, Farkas B, et al. Analysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodology[J]. Materials and Design,2020,194:1−11. -