Rapid Discrimination of Different Years of Brewing Liquor by Gas Chromatography-Ion Mobility Spectroscopy Combined with Chemometrics Method
-
摘要: 目的:建立了气相色谱-离子迁移谱(Gas chromatography-ion mobility spectroscopy, GC-IMS)技术结合化学计量学分析快速区分不同年份酱香型白酒的方法。方法:采用GC-IMS技术对多批次不同年份的酱香型酿造白酒样本中挥发性有机物进行分析,通过对比挥发性有机物含量差异快速生成指纹图谱,并通过PCA-CA分析实现样本的快速区分。结果:将白酒中检测到的化合物峰利用NIST 2014气相保留指数数据库与IMS迁移时间数据库进行准确的二维定性后共鉴别出包含单体和二聚体在内的共53个挥发性有机物。挥发性有机物指纹图谱对比结果显示不同年份样本中所含化合物的种类和含量差异较大,采用PCA分析可以实现不同年份原酒和老熟酒的正确区分,采用主成分分析-聚类分析(Principal component analysis-cluster analysis, PCA-CA)处理结果进一步明确了区分结果的准确性。结论:该方法直观、快速、准确,为酿造白酒的年份区分提供了方法和技术支持。
-
关键词:
- 气相离子迁移谱技术(GC-IMS) /
- 化学计量学 /
- 主成分分析-聚类分析(PCA-CA) /
- 酿造白酒 /
- 年份
Abstract: Objective: In this work, a method based on gas chromatography-ion mobility spectroscopy (GC-IMS) combined with chemometrics was established and applied to the rapid discrimination of the years of sauce-flavored liquor. Methods: GC-IMS was employed to the rapid analysis of the volatile organic compounds (VOCS) from liquor samples. Gallery-plot, also called fingerprints, was constructed and characterized the difference of the VOCS for different years samples via the colored spots, and applied to the discrimination of liquor years combined with PCA-CA analysis. Results: A total of 53 volatiles including monomers and dimers were identified via the NIST 2014 database of gas retention index and the database of IMS migration time for accurate two-dimensional characterization. The comparison results of VOCS fingerprints showed that the types and contents of the compounds contained in different samples were quite different, the PCA results indicated that the samples of different years could be differentiated correctly, the PCA-CA processing results further clarified the differences and the accuracy of distinguishing results. Conclusion: This method was intuitive, fast and accurate, and would provide the method and technical support for the distinction of brewing liquor. -
表 1 GC-IMS 实验条件
Table 1. Test conditions of GC-IMS
仪器 项目 GC-IMS参数 样品孵育 孵育时间 10 min 样品量 1 mL 孵育温度 60 ℃ 进样口温度 65 ℃ GC 色谱柱类型 SE-54 色谱柱柱长 30 m 柱温 40 ℃ 运行时间 30 min IMS 电离源 氚(6.5 KeV) 电离模式 正模式 初始载气流量 2 mL/min(N2, 99.999%) 漂移气流量 150 mL/min(N2, 99.999%) 迁移管温度 45 ℃ 采集均值 12 表 2 酒样中检测出的VOCs
Table 2. VOCs detected in liquor samples
编号 化合物 CAS号 化学式 分子量 气相保留指数 气相保留时间(s) 迁移时间(RIPrel) 1 癸醛(decanal) C112312 C10H20O 156.3 1199.90 2087.91 2.06 2 癸醛(decanal) C112312 C10H20O 156.3 1200.70 2093.80 1.50 3 乙酸丙酯(Propyl hexanoate) C626777 C9H18O2 158.2 1106.80 1442.98 1.92 4 乙酸丙酯(Propyl hexanoate) C626777 C9H18O2 158.2 1107.40 1445.93 1.42 5 辛醛(Octanal) C124130 C8H16O 128.2 1021.00 1026.49 1.83 6 辛醛(Octanal) C124130 C8H16O 128.2 1022.00 1030.43 1.39 7 甲基己酮(Hexyl methyl ketone) C111137 C8H16O 128.2 1003.00 955.60 1.35 8 2,6-二甲基-4-庚酮(2,6-dimethyl-4-heptanone) C108838 C9H18O 142.2 971.20 857.14 1.34 9 2,6-二甲基-4-庚酮(2,6-dimethyl-4-heptanone) C108838 C9H18O 142.2 971.90 859.11 1.79 10 α-蒎烯(α-Pinene) C80568 C10H16 136.2 942.50 779.97 1.72 11 α-蒎烯(α-Pinene) C80568 C10H16 136.2 943.00 781.30 1.31 12 庚醛(Heptanal) C111717 C7H14O 114.2 903.10 685.11 1.69 13 2-庚酮(2-Heptanone) C110430 C7H14O 114.2 899.60 677.39 1.28 14 2,5-二甲基吡嗪(2,5-Dimethylpyrazine) C123320 C6H8N2 108.1 895.90 669.20 1.13 15 乙酸异戊酯(3-Methylbutyl acetate) C123922 C7H14O2 130.2 883.10 644.99 1.30 16 乙酸异戊酯(3-Methylbutyl acetate) C123922 C7H14O2 130.2 883.30 645.35 1.75 17 1-己醇(1-Hexanol) C111273 C6H14O 102.2 870.20 622.92 1.65 18 1-己醇(1-Hexanol) C111273 C6H14O 102.2 870.40 623.28 1.33 19 2-甲基吡嗪(2- Methyl pyrazine) C109080 C5H6N2 94.1 824.90 551.36 1.33 20 正己醛(Hexanal) C66251 C6H12O 100.2 797.60 512.20 1.56 21 2-甲基吡嗪(2- Methyl pyrazine) C109080 C5H6N2 94.1 826.80 554.21 1.11 22 2-己酮(2-Hexanone) C591786 C6H12O 100.2 803.80 520.74 1.21 23 1-戊醇(1-Pentanol) C71410 C5H12O 88.1 761.40 464.85 1.52 24 2,3-戊二酮(2,3-Pentanedione) C600146 C5H8O2 100.1 701.70 396.55 1.21 25 丙烯酸乙酯(Ethyl acrylate) C140885 C5H8O2 100.1 702.00 396.87 1.13 26 2-戊酮(2-Pentanone) C107879 C5H10O 86.1 687.20 381.85 1.35 27 正丁醇(1-Butanol) C71363 C4H10O 74.1 651.40 354.04 1.37 28 2-丁酮(2-Butanone) C78933 C4H8O 72.1 598.10 316.32 1.23 29 丙醇(1-Propanol) C71238 C3H8O 60.1 584.00 307.05 1.25 30 2,3-丁二酮(2,3-butanedione) C431038 C4H6O2 86.1 581.60 305.45 1.17 31 甲基叔丁基醚(tert-Butylmethylether) C1634044 C5H12O 88.1 561.80 292.98 1.14 32 丙酮(Acetone) C67641 C3H6O 58.1 493.60 253.67 1.14 33 苯甲醛(Benzaldehyde) C100527 C7H6O 106.1 952.70 806.52 1.47 34 1-辛醇(1-Octanol) C111875 C8H18O 130.2 1062.90 1212.00 1.87 35 1-辛醇(1-Octanol) C111875 C8H18O 130.2 1063.40 1214.55 1.42 36 3-辛酮(3-Octanone) C106683 C8H16O 128.2 982.40 889.29 1.30 37 4-甲基戊醇(4-Methylpentanol) C626891 C6H14O 102.2 851.10 591.78 1.65 38 乳酸乙酯(Ethyl lactate) C97643 C5H10O3 118.1 814.40 535.86 1.54 39 丁酸(Butanoic acid) C107926 C4H8O2 88.1 785.10 495.23 1.39 40 2,3-丁二醇(2,3-Butanediol) C513859 C4H10O2 90.1 791.20 503.37 1.37 41 乙酸异丁酯(Isobutyl acetate) C110190 C6H12O2 116.2 769.50 475.07 1.62 42 异丁酸乙酯(Ethyl isobutyrate) C97621 C6H12O2 116.2 755.80 458.02 1.56 43 1-戊醇(1-Pentanol) C71410 C5H12O 88.1 763.10 466.93 1.25 44 2-甲基丁醇(2-methylbutanol) C137326 C5H12O 88.1 725.70 422.74 1.48 45 乙酸丙酯(Propyl acetate) C109604 C5H10O2 102.1 712.10 407.63 1.46 46 戊醛(Valeraldehyde) C110623 C5H10O 86.1 662.80 362.63 1.41 47 乙酸乙酯(Ethyl Acetate) C141786 C4H8O2 88.1 617.50 329.54 1.34 48 异丙醇(Isopropyl alcohol) C67630 C3H8O 60.1 501.90 258.15 1.19 49 苯甲醛(Benzaldehyde) C100527 C7H6O 106.1 953.00 807.23 1.15 50 2-庚醇(2-Heptanol) C543497 C7H16O 116.2 891.50 659.78 1.36 51 正戊酸(Pentanoic acid) C109524 C5H10O2 102.1 891.10 659.10 1.49 52 顺-3-己烯醇((Z)-3-hexenol) C928961 C6H12O 100.2 846.00 583.62 1.25 53 2-甲基丁酸(2-methylbutyric acid) C116530 C5H10O2 102.1 825.10 551.66 1.45 表 3 相关矩阵的特征值
Table 3. Eigen-values of the correlation matrix
成分 方差贡献率(%) 累积方差贡献率(%) 特征值 PC1 61.176 61.177 1.09E+07 PC2 33.264 94.441 5946855.469 PC3 3.213 97.654 574370.201 PC4 0.940 98.594 168033.821 PC5 0.523 99.115 93251.839 PC6 0.343 99.459 61408.800 -
[1] 陈志宏, 张汆, 徐有山. 白酒中风味物质分析研究进展[J]. 中国酿造,2020,39(6):13−16. doi: 10.11882/j.issn.0254-5071.2020.06.003 [2] 程娇娇. 不同年份赊店酒香气模型的建立及其对比分析[D]. 新乡: 河南科技学院, 2018. [3] 陈晨. 怀藏酱酒香气物质研究[D]. 广州: 华南理工大学, 2017. [4] 代金凤, 罗政, 文春平, 等. 不同贮藏环境对浓香型白酒品质的影响[J]. 中国酿造,2019,38(5):23−26. doi: 10.11882/j.issn.0254-5071.2019.05.005 [5] 奚留华. 几种白酒年份酒的荧光特性分析及其应用[D]. 无锡: 江南大学, 2016. [6] 宋鑫澍, 陈国庆, 朱焯炜, 等. 3维荧光光谱测定白酒年份酒中乙酸的体积分数[J]. 激光技术,2018,42(4):531−535. doi: 10.7510/jgjs.issn.1001-3806.2018.04.018 [7] 宋鑫澍. 白酒年份酒中几种主要成分的荧光光谱研究[D]. 无锡: 江南大学, 2018. [8] 邹小波, 刘泽宇, 郑悦, 等. 基于离子选择性电极传感器阵列的白酒香型快速鉴别[J]. 现代食品科技,2018,34(7):251−257. [9] 茅嘉田, 周晚晴, Pavel N N, 等. 离子色谱电导法检测白酒、红酒、啤酒和 多种黄酒中的6种阳离子[J]. 食品科学,2020,41(6):310−315. doi: 10.7506/spkx1002-6630-20190414-187 [10] 施珂, 孙啸涛, 沈才洪, 等. 基于直接-气相色谱-嗅闻的整体感官评价模式分析泸香型白酒的关键香气成分[J]. 食品工业科技,2020,41(7):208−219. [11] 白丽真, 刘洪银, 刘 伟, 等. 超高效液相色谱法检测白酒中乳酸含量的方法及方法确认[J]. 酿酒科技,2020,1:75−77. [12] 朱焯炜, 阙立志, 陈国庆, 等. 三维荧光光谱结合平行因子及神经网络对清香型白酒的年份鉴别[J]. 光谱学与光谱分析,2015,35(9):2573−2577. [13] 辜姣, 陈国庆, 张笑河, 等. 基于小波分解和因子分析的白酒香型和年份鉴定的研究[J]. 光谱学与光谱分析,2018,38(8):2511−2515. [14] Natalie G, Markus B, Daniel S, et al. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling[J]. Anal Bioanal Chem,2017,409(16):3933−3942. doi: 10.1007/s00216-017-0338-2 [15] Taylor C, Lough F, Stanforth S P, et al. Analysis of listeria using exogenous volatile organic compound metabolitesand their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS)[J]. Analytical and Bioanalytical Chemistry,2017,409(17):4247−4256. doi: 10.1007/s00216-017-0375-x [16] Saschal L, Luzia S, Norman A, et al. Coupling laser desorption with gas chromatography and ion mobility spectrometry for improved olive oil characterization[J]. Food Chemistry,2018,255:323−331. doi: 10.1016/j.foodchem.2018.01.193 [17] 袁琴琴. 气相色谱-离子迁移谱分析漂烫和银杏叶提取物对腊肉挥发性物质成分的影响[J]. 食品研究与开发,2020,41(11):165−172. [18] Wang X R, Rogers K M, Li Y, et al. Untargeted and targeted discrimination of honey collected by apis cerana and apis mellifera based on volatiles using HS-GC-IMS and HS-SPME-GC-MS[J]. Journal of Agricultural and Food Chemistry,2019,67(43):12144−12152. doi: 10.1021/acs.jafc.9b04438 [19] Sebastian S, Natalie G, Sascha R, et al. Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys-is it worth to go the extra mile?[J]. Analytical and Bioanalytical Chemistry,2019,411(23):6005−6019. doi: 10.1007/s00216-019-01978-w [20] Natalie G, Markus B, Sebastian S, et al. Volatile-compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profifiling for assessment of the authenticity of honey[J]. Analytical Chemistey,2018,90(3):1777−1785. doi: 10.1021/acs.analchem.7b03748 [21] Mengqi L, Ruiwen Y, Hao Z, et al. Development of a flavor fingerprint by HS-GC–IMS with PCA for volatile compounds of Tricholoma matsutake Singer[J]. Food Chemistry,2019,290:32−39. doi: 10.1016/j.foodchem.2019.03.124 [22] Yu G, Dong C, Yifei D, et al. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPMEGC-MS[J]. Journal of Chromatography B,2018,1099:46−55. doi: 10.1016/j.jchromb.2018.09.011 [23] 祁兴普, 陈通, 刘萍, 等. 基于气相离子迁移谱黄酒产地识别的研究[J]. 食品工业科技,2019,40(22):273−281. [24] 王涛, 罗政, 文春平, 等. 不同贮藏方式下四川白酒的性质变化[J]. 食品工业,2020,41(2):169−172. [25] 陈玉莲. 浅析酱香白酒风味质量形成的主要影响因素[J]. 食品安全导刊,2018(36):134. doi: 10.3969/j.issn.1674-0270.2018.12.116 [26] 张杰, 程伟, 潘天全, 等. 浓香型白酒风味成分研究现状及展望[J]. 酿酒,2019,46(1):29−32. doi: 10.3969/j.issn.1002-8110.2019.01.011 [27] 陆伦维, 钟敏, 冯小冰, 等. 基于主成分分析判别不同等级酱香型白酒的研究[J]. 酿酒科技,2020(2):17−21. -