响应面法优化黑化红枣三萜酸提取工艺及抗氧化活性研究

付亚玲 姚俊修 张仁堂

付亚玲,姚俊修,张仁堂. 响应面法优化黑化红枣三萜酸提取工艺及抗氧化活性研究[J]. 食品工业科技,xxxx,x(x):1−8. doi:  10.13386/j.issn1002-0306.2020080218
引用本文: 付亚玲,姚俊修,张仁堂. 响应面法优化黑化红枣三萜酸提取工艺及抗氧化活性研究[J]. 食品工业科技,xxxx,x(x):1−8. doi:  10.13386/j.issn1002-0306.2020080218
FU Yaling, YAO Junxiu, ZHANG Rentang. Optimization of Extraction and Antioxidant Activities of Triterpenic Acids from Blacked Jujube by Response Surface Methodology[J]. Science and Technology of Food Industry, xxxx, x(x): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080218
Citation: FU Yaling, YAO Junxiu, ZHANG Rentang. Optimization of Extraction and Antioxidant Activities of Triterpenic Acids from Blacked Jujube by Response Surface Methodology[J]. Science and Technology of Food Industry, xxxx, x(x): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080218

响应面法优化黑化红枣三萜酸提取工艺及抗氧化活性研究

doi: 10.13386/j.issn1002-0306.2020080218
基金项目: 山东省重点研发计划项目“红枣微发酵工艺关键技术研究与产品开发”(2016GNC113015);山东省2017年度农业重大应用技术创新项目“高附加值固态发酵黑枣深加工关键技术集成与产业化”;2019年度山东省重点研发计划(公益类专项)“黑变红枣枣醋发酵关键技术与黑枣醋蛋液开发”(2019GNC106061);佳县红润枣业专业合作社横向课题“佳县红枣黑化加工关键技术研究”
详细信息
    作者简介:

    付亚玲(1992−),男,硕士研究生,研究方向:农产品加工与贮藏,E-mail:yalingfu123@163.com

    通讯作者:

    张仁堂(1978−),男,博士,副教授,研究方向:果蔬加工与功能食品,E-mail:rentangzhang@163.com

  • 中图分类号: TS201.1

Optimization of Extraction and Antioxidant Activities of Triterpenic Acids from Blacked Jujube by Response Surface Methodology

  • 摘要: 目的:以黑化后的红枣为试材,研究其三萜酸提取工艺条件及抗氧化活性。方法:通过单因素实验和Box-Behnken响应面实验进行超声波提取黑化红枣三萜酸工艺优化,并测定黑化红枣三萜酸纯化前后对DPPH、ABTS自由基的清除能力和总还原力以评估其体外抗氧化活性。结果:黑化红枣中三萜酸的最优提取工艺参数为:50%乙醇浓度,液料比23:1 mL/g,超声时间30 min,超声功率300 W,在此条件下,三萜酸含量为1.313±0.01 mg/g;黑化红枣三萜酸粗提物和纯化物清除DPPH、ABTS+自由基的半抑制浓度(IC50)分别为0.571、0.053和0.186、0.059 mg/mL,总还原力则与样品浓度呈现一定的量效关系。结论:该工艺简单、合理可行,黑化红枣三萜酸具有良好的抗氧化活性。
  • 图  1  齐墩果酸吸收光谱图

    Figure  1.  Absorption spectrogram of Oleanolic acid

    图  2  齐墩果酸标准曲线

    Figure  2.  Standard curve of oleanolic acid

    图  3  乙醇浓度对三萜酸提取量的影响

    Figure  3.  Effect of ethanol concentration on yield of triterpenoid acid

    图  4  液料比对三萜酸提取量的影响

    Figure  4.  Effect of liquid-solid ratio on yield of triterpenoid acid

    图  5  超声时间对三萜酸提取量的影响

    Figure  5.  Effect of ultrasonic time on yield of triterpenoid acid

    图  6  超声功率对三萜酸提取量的影响

    Figure  6.  Effect of ultrasonic power on yield of triterpenoid acid

    图  7  各因素交互作用响应面及等高线图

    Figure  7.  Response surface and contour plots showing the interactive effects of variable

    图  8  三萜酸DPPH自由基清除效果

    Figure  8.  DPPH radical scavenging effect of triterpenic acids

    图  9  三萜酸ABTS自由基清除效果

    Figure  9.  ABTS+·scavenging effect of triterpenic acids

    图  10  三萜酸总还原力测定

    Figure  10.  Determinatim of FRAP value of triterpenic acids

    表  1  响应面试验因素及水平表

    Table  1.   Factors and levels of central composite design

    水平因素
    A乙醇浓度(%)B液料比(mL/g)C提取时间(min)
    −14020:120
    05025:130
    16030:140
    下载: 导出CSV

    表  2  Box-Behnken 试验设计及结果

    Table  2.   Box-Behnken design with experimental results

    实验号ABCY提取量(mg/g)
    1−1−101.051±0.05
    21−101.002±0.09
    3−1101.178±0.13
    41101.191±0.04
    5−10−10.986±0.08
    610−11.067±0.14
    7−1011.08±0.16
    81010.975±0.06
    90−1−11.048±0.12
    1001−11.064±0.12
    110−110.956±0.10
    120111.185±0.13
    130001.313±0.09
    140001.254±0.06
    150001.326±0.10
    160001.248±0.08
    170001.051±0.10
    下载: 导出CSV

    表  3  回归方程方差分析结果

    Table  3.   Results of variance analysis of regression equation

    方差来源平方和自由度均方FP显著性
    模型0.2490.02630.88<0.0001**
    A4.500×10−414.500×10−40.530.4910
    B0.03910.03946.150.0003**
    C1.201×10−411.201×10−40.140.7185
    AB9.610×10−419.610×10−41.130.3236
    AC8.649×10−318.649×10−310.150.0154*
    BC0.01110.01113.310.0082**
    A20.04710.04755.160.0001**
    B20.02010.02023.810.0018**
    C20.09210.092108.09<0.0001**
    残差5.966×10−378.524×10−4
    失拟项7.393×10−432.464×10−40.190.8991
    纯误差5.227×10−341.307×10−3
    总离差0.2416
    注:**为P<0.01,差异极显著;*为P<0.05,差异显著。
    下载: 导出CSV
  • [1] Ji X L, Peng Q, Yuan Y P, et al. Isolation, structures and bioactivities of the polysaccharides from jujube fruit(Ziziphus jujuba Mill.): A review[J]. Food Chemistry,2017,27:349−357.
    [2] Song L J, Zhang L, Xu L, et al. Optimized extraction of total triterpenoids from Jujube (Ziziphus jujuba Mill.) and comprehensive analysis of triterpenic acids in different cultivars[J]. Plants,2020,9:412. doi:  10.3390/plants9040412
    [3] Milena M, Paol M, Stefania M, et al. Quali-quantitative determination of triterpenic acids of Ziziphus jujuba fruits and evaluation of their capability to interfere in macrophages activation inhibiting NO release and iNOS expression[J]. Food Research International,2015,77:109−117. doi:  10.1016/j.foodres.2015.09.009
    [4] Gao L, Gu D Y, Sun X, et al. Investigation of processing technology for aged black jujube[J]. Food Science and Nutrition Studies,2019,3(4):107−121. doi:  10.22158/fsns.v3n4p107
    [5] Sun X, Gu D Y, Fu Q B, et al. Content variations in compositions and volatile component in jujube fruits during the blacking process[J]. Food Science & Nutrition,2019,7(4):1−9.
    [6] 李斌, 李元甦, 孟宪军, 等. 响应曲面法优化北五味子总三萜的提取工艺[J]. 食品科学,2010,31(16):106−110.
    [7] Kou X H, Chen Q, Li X H, et al. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars[J]. Food Chemistry,2015,173:1037−1044. doi:  10.1016/j.foodchem.2014.10.110
    [8] Qiao A M, Wang Y H, Xiang L M, et al. Triterpenoids of sour jujube show pronounced inhibitory effect on human tumor cells and antioxidant activity[J]. Fitoterapia,2014,98:137−142. doi:  10.1016/j.fitote.2014.07.020
    [9] Xiao S L, Tian Z Y, Wang Y F, et al. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives[J]. Medicinal Research Reviews,2018,38(3):951−976. doi:  10.1002/med.21484
    [10] Wang Z H, Hsu C C, Huang C N, et al. Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabatic mice[J]. European Journal of Pharmacology,2010,628:255−260. doi:  10.1016/j.ejphar.2009.11.019
    [11] Gao Q H, Wu C S, Wang M. The Jujube (Ziziphus Jujuba Mill.) Fruit: A Review of Current Knowledge of Fruit Composition and Health Benefits[J]. Journal of Agricultural and Food Chemistry,2013,61(14):3351−3363. doi:  10.1021/jf4007032
    [12] Szakiel A, Paczkowski C, Pensec F, et al. Fruit cuticular waxes as asource of biologically active triterpenoids[J]. Phytochemistry Reviews,2012,.11(2-3):263−284. doi:  10.1007/s11101-012-9241-9
    [13] 刘子祯, 姜蕊, 刘伟锐, 等. 红枣叶中三萜皂苷的提取工艺和含量测定研[J]. 食品研究与开发,2016,37(1):57−59. doi:  10.3969/j.issn.1005-6521.2016.01.015
    [14] 蔡天娇, 雷宏杰, 王瑞珍, 等. 红枣三萜酸大孔吸附树脂纯化特性及其抗氧化活性研究[J]. 食品工业科技,2017,38(20):159−165.
    [15] 樊梓鸾, 赵梓煣, 赵翔, 等. 红豆越橘总三萜的纯化及体外抗炎活性[J]. 自然科学版,2019,43(4):132−138.
    [16] Fu Z F, Tu Z C, Zhang L, et al. Antioxidant activities and polyphenols of sweet potato (Ipomoea batatas L.) leaves extracted with solvents of various polarities[J]. Food Bioscience,2016,15(3):11−18.
    [17] Liu C H, Yen M H, Tsang S F, et al. Antioxidant triterpenoids from the stems of Momordica charantia[J]. Food Chemistry,2010,118(3):751−756. doi:  10.1016/j.foodchem.2009.05.058
    [18] 康宁, 王占斌, 李德海, 等. 粗毛纤孔菌三萜类化合物的诱导合成及其抗氧化功能分析[J]. 食品科学,2019,40(10):157−165. doi:  10.7506/spkx1002-6630-20180530-430
    [19] 张爽, 任亚梅, 刘春利, 等. 响应面试验优化苹果渣总三萜超声提取工艺[J]. 食品科学,2015,36(16):44−50. doi:  10.7506/spkx1002-6630-201516008
    [20] 张琼, 张雪丹, 王中堂, 等. 响应面法优化枣果三萜酸的提取工艺研究[J]. 山东农业科学,2018,50(4):120−124.
    [21] 周茜, 韩雪, 韩晓梅, 等. 响应面试验优化乌梅熊果酸提取工艺及其对大肠杆菌的抑制作用[J]. 食品科学,2016,37(8):67−73. doi:  10.7506/spkx1002-6630-201608012
    [22] 凡芸, 宋雅, 孙月, 等. 超声辅助乙醇提取杏鲍菇总三萜化合物工艺研究[J]. 食品工业,2016,37(8):124−126.
    [23] 张国强, 郭晓东, 薛文华, 等. 西藏野生卷叶黄精多酚的提取及其抗氧化活性分析[J]. 食品科学,2017,38(06):236−241.
    [24] 黄艳, 孙怡婷, 张见明, 等. 松毛菇多酚的提取及纯化工艺研究[J]. 食品研究与开发,2019,40(21):106−114.
    [25] Jiang C X, Li X, Jiao Y P, et al. Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa[J]. Carbohydrate Polymers,2014,110:10−17. doi:  10.1016/j.carbpol.2014.03.027
    [26] Sun Y, Liu D, Chen J, et al. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels[J]. Ultrasonics Sonochemistry,2011,18(1):243−249. doi:  10.1016/j.ultsonch.2010.05.014
    [27] 王美英, 李化强, 吴菲菲, 等. 响应面法优化超声辅助竹叶鸡爪茶多酚的提取工艺[J]. 食品安全质量检测学报,2019,10(24):8337−8344.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  13
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 网络出版日期:  2021-03-31

目录

    /

    返回文章
    返回

    重要通知

    从2020年12月23日起,若所投稿件的参考文献为中文,则需补充此中文参考文献的英文格式,特此通知。