• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

贝类致敏原抗原表位及交叉反应的研究进展

桓霏 云肖 李梦思 韩天娇 刘萌 杨阳 曹敏杰 刘光明

桓霏,云肖,李梦思,等. 贝类致敏原抗原表位及交叉反应的研究进展[J]. 食品工业科技,2021,42(14):420−428. doi:  10.13386/j.issn1002-0306.2020080238
引用本文: 桓霏,云肖,李梦思,等. 贝类致敏原抗原表位及交叉反应的研究进展[J]. 食品工业科技,2021,42(14):420−428. doi:  10.13386/j.issn1002-0306.2020080238
HUAN Fei, YUN Xiao, LI Mengsi, et al. Research Progress on Epitopes and Cross-reactivity of Shellfish Allergens[J]. Science and Technology of Food Industry, 2021, 42(14): 420−428. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080238
Citation: HUAN Fei, YUN Xiao, LI Mengsi, et al. Research Progress on Epitopes and Cross-reactivity of Shellfish Allergens[J]. Science and Technology of Food Industry, 2021, 42(14): 420−428. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080238

贝类致敏原抗原表位及交叉反应的研究进展

doi: 10.13386/j.issn1002-0306.2020080238
基金项目: 国家重点研发计划项目(2019YFD0901703);国家自然科学基金项目(318717203,32072336,32001695,31901811);福建省科技计划项目(2018N5009,2018R0071);海洋科研公共部门专项基金项目(DY135-B2-07,201505026-03)
详细信息
    作者简介:

    桓霏(1997−),女,硕士研究生,研究方向:水产品过敏,E-mail:1225252857@qq.com

    通讯作者:

    刘光明(1972−),男,博士,教授,研究方向:食品加工与安全,E-mail:gmliu@jmu.edu.cn

  • 中图分类号: TS254.1

Research Progress on Epitopes and Cross-reactivity of Shellfish Allergens

  • 摘要: 贝类(Shellfish)包括甲壳类和软体类,具有很高的营养价值和经济价值。我国作为贝类生产及消费大国,由食用贝类引发的食物过敏问题日益增多。已报道的贝类食品致敏原有原肌球蛋白、精氨酸激酶、肌质钙结合蛋白、肌球蛋白轻链等。抗原表位是食品致敏原发挥作用的分子基础,明确不同致敏原的抗原表位,是深入分析其致敏性及交叉反应性的关键,也是定向消减致敏原致敏性的重要前提。本文介绍了贝类食品致敏原种类、抗原表位、交叉反应性和加工消减致敏原致敏性等方面的研究进展。
  • 图  1  贝类TM线性表位定位[12,24-29]

    Figure  1.  Linear epitopes location of shellfish TM[12,24-29]

    注:带*表示预测的抗原表位;图2~图4同。

    图  2  贝类AK线性表位定位[35-39]

    Figure  2.  Linear epitopes location of shellfish AK[35-39]

    图  3  贝类SCP线性表位定位[37,41]

    Figure  3.  Linear epitopes location of shellfish SCP

    图  4  贝类MLC线性表位定位[37,47-48]

    Figure  4.  Linear epitopes location of shellfish MLC

    表  1  贝类四种常见致敏原的构象表位

    Table  1.   Conformational epitopes of four commonly shellfish allergens

    致敏原构象表位
    TM[27]K5A3K6Q9D2I4A10I4
    L88I92A86L94R90V85
    K128R133S134L135V129N132R125S136S134
    L169V172L176M171V165A170L176A174L169
    N230A229A234K226T227K231A235A237
    I270K268K264Y267L274E263I270T271
    T277Q276T277S279F278L274S282L281S279
    AK[38, 51]L17A19A20T21D22C23K24K28V58L61D62
    G105D106V107N108Q109F110V247F336
    L46G47A48N137P138C139L140T141Q144N199
    S153S154T155S157N158L159L163T166R256
    S157G165T166Y167Y168P169V177L181I182H212D214
    K146P169L170T171G172M173L181L187P205T206G207
    T171Q196N199R202Y203W204P205T206
    I121H185K189G310T311R312T316A318E319G320V322
    SCP[51]A34L35N37T38L39I40G42R43Y51
    L35N37T38L39I40E41G42R43N54T112
    R43G44E45F46S48A50Y51A52
    N37A50A52N53N54Q55K56I57
    MLC[48]N41N43P44T45L46A47I48I49V75G82
    Y84S83Y84E85F87M88L146K147K148
    F87G82S83Y84E85D86F87V90L91L146
    F87A81G82E85F87M88V90L91L146
    N99K96S97E98N99G100T101Y104F139
    下载: 导出CSV
  • [1] Venter C, Patil V, Grundy J, et al. Prevalence and cumulative incidence of food hyper-sensitivity in the first 10 years of life[J]. Pediatric Allergy and Immunology,2016,27(5):452−458. doi:  10.1111/pai.12564
    [2] Gupta R S, Warren C M, Smith B M, et al. Prevalence and severity of food allergies among adults[J]. JAMA Network Open,2019,2(1):e185630. doi:  10.1001/jamanetworkopen.2018.5630
    [3] Leung A S Y, Wong G W K, Tang M L K. Food allergy in the developing world[J]. Journal of Allergy and Clinical Immunology,2018,141(1):76−78. doi:  10.1016/j.jaci.2017.11.008
    [4] 张雅蓉, 陈云, 赵艾, 等. 中国3~12岁儿童自报食物过敏与食物不耐受的相关因素分析[J]. 卫生研究,2015,44(2):226−231.
    [5] Gonzalez-Estrada A, Silvers S K, Klein A, et al. Epidemiology of anaphylaxis at a tertiary care center[J]. Annals of Allergy, Asthma & Immunology,2017,118(1):80−85.
    [6] Moonesinghe H, Mackenzie H, Venter C, et al. Prevalence of fish and shellfish allergy[J]. Annals of Allergy, Asthma & Immunology,2016,117(3):264−272.
    [7] Loh W, Tang M L K. The epidemiology of food allergy in the global context[J]. International Journal of Environmental Research and Public Health,2018,15(9):2043. doi:  10.3390/ijerph15092043
    [8] Hao G D, Lai X X, Song Z J, et al. Self-reported questionnaire survey on the prevalence and symptoms of adverse food reactions in patients with chronic inhalant diseases in Tangshan city, China[J]. Allergy, Asthma & Clinical Immunology,2018,14(1):3−6.
    [9] Wai C Y Y, Leung N Y H, Chu K H, et al. Overcoming shellfish allergy: How far have we come?[J]. International Journal of Molecular Sciences,2020,21(6):2234. doi:  10.3390/ijms21062234
    [10] Brough H A, Liu A H, Sicherer S, et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy[J]. Journal of Allergy and Clinical Immunology,2015,135(1):164−170. doi:  10.1016/j.jaci.2014.10.007
    [11] Negi S S, Braun W. Cross-React: A new structural bioinformatics method for predicting allergen cross-reactivity[J]. Bioinformatics,2017,33(7):1014−1020.
    [12] Leung N Y, Wai C Y, Ho M H, et al. Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries[J]. Cellular & Molecular Immunology,2017,14(3):308−318.
    [13] Scott J K, Smith G P. Searching for peptide ligands with an epitope library[J]. Science,1990,249(4967):386−390. doi:  10.1126/science.1696028
    [14] 罗春萍, 冯娟, 项缨, 等. 辐照技术消减食物过敏原致敏性研究进展[J]. 核农学报,2020,34(6):1272−1280. doi:  10.11869/j.issn.100-8551.2020.06.1272
    [15] Motoyama K, Suma Y, Ishizaki S, et al. Identification of tropomyosins as major allergens in antarctic krill and mantis shrimp and their amino acid sequence characteristics[J]. Marine Biotechnology,2008,10(6):709−718. doi:  10.1007/s10126-008-9109-6
    [16] Yu H L, Cao M J, Cai Q F, et al. Effects of different processing methods on digestibility of Scylla paramamosain allergen (tropomyosin)[J]. Food and Chemical Toxicology,2011,49(4):791−798. doi:  10.1016/j.fct.2010.11.046
    [17] Hoffman D R, Day E D, Miller J S. The major heat-stable allergen of shrimp[J]. Annals of Allergy,1981,47(1):17−22.
    [18] Shanti K N, Martin B M, Nagpal S, et al. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes[J]. Journal of Immunology,1993,151(10):5354−5363.
    [19] Leung P S, Chen Y C, Mykles D L, et al. Molecular identification of the lobster muscle protein tropomyosin as a seafood allergen[J]. Molecular Marine Biology and Biotechnology,1998,7(1):12−20.
    [20] Rahman A M A, Lopata A L, Randell E W, et al. Absolute quantification method and validation of airborne snow crab allergen tropomyosin using tandem mass spectrometry[J]. Analytica Chimica Acta,2010,681(1-2):49−55. doi:  10.1016/j.aca.2010.09.040
    [21] Ishikawa M, Ishida M, Shimakura K, et al. Tropomyosin, the major oyster Crassostrea gigas allergen and its IgE-binding epitopes[J]. Journal of Food Science,1998,63(1):44−47. doi:  10.1111/j.1365-2621.1998.tb15672.x
    [22] Hiroshi M, Hiromi F, Yoshimasa I, et al. Identification of the first major allergen of a squid (Todarodes pacificus)[J]. Journal of Allergy and Clinical Immunology,1996,98(5):948−953. doi:  10.1016/S0091-6749(96)80011-X
    [23] Chu K H, Wong S H, Leung P. Tropomyosin is the major mollusk allergen: Reverse transcriptase polymerase chain reaction, expression and IgE reactivity[J]. Marine Biotechnology,2000,2(5):499−509. doi:  10.1007/s101260000035
    [24] Ayuso R, Lehrer S B, Reese G. Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin)[J]. International Archives of Allergy and Immunology,2002,127(1):27−37. doi:  10.1159/000048166
    [25] Zhang Z, Li X M, Xiao H, et al. IgE-binding epitope mapping of tropomyosin allergen (Exo m 1) from Exopalaemon modestus, the freshwater Siberian prawn[J]. Food Chemistry,2020,309:125603. doi:  10.1016/j.foodchem.2019.125603
    [26] Ayuso R, Sánchez-Garcia S, Pascal M, et al. Is epitope recognition of shrimp allergens useful to predict clinical reactivity?[J]. Clinical & Experimental Allergy,2012,42(2):293−304.
    [27] Liu G Y, Mei X J, Hu M J, et al. Analysis of the allergenic epitopes of tropomyosin from mud crab using phage display and site-directed mutagenesis[J]. Journal of Agricultural and Food Chemistry,2018,66(34):9127−9137. doi:  10.1021/acs.jafc.8b03466
    [28] Ishikawa M, Suzuki F, Ishida M, et al. Identification of tropomyosin as a major allergen in the octopus Octopus vulgaris and elucidation of its IgE-binding epitopes[J]. Fisheries Science,2001,67(5):934−942. doi:  10.1046/j.1444-2906.2001.00344.x
    [29] Fang L, Li G, Zhang J, et al. Identification and mutational analysis of continuous, immunodominant epitopes of the major oyster allergen Crag 1[J]. Clinical Immunology,2019,201:20−29. doi:  10.1016/j.clim.2019.02.008
    [30] García-Orozco K D, Aispuro-Hernández E, Yepiz-Plascencia G, et al. Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei[J]. International Archives of Allergy and Immunology,2007,144(1):23−28. doi:  10.1159/000102610
    [31] Yu C J, Lin Y F, Chiang B L, et al. Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2[J]. The Journal of Immunology,2003,170(1):445−453. doi:  10.4049/jimmunol.170.1.445
    [32] Abdel Rahman A M, Kamath S D, Lopata A L, et al. Biomolecular characterization of allergenic proteins in snow crab (Chionoecetes opilio) and de novo sequencing of the second allergen arginine kinase using tandem mass spectrometry[J]. Journal of Proteomics,2011,74(2):231−241. doi:  10.1016/j.jprot.2010.10.010
    [33] Lopez Zavala A A, Sotelo Mundo R R, Garcia Orozco K D, et al. Crystallization and X-ray diffraction studies of arginine kinase from the white Pacific shrimp Litopenaeus vannamei [J]. Acta Crystallographica Section F-Structural Biology Communications,2012,68(7):783−785. doi:  10.1107/S1744309112020180
    [34] Yang Y, Liu G Y, Yang H, et al. Crystal structure determination of Scylla paramamosain arginine kinase, an allergen that may cause cross-reactivity among invertebrates[J]. Food Chemistry,2019,271:597−605. doi:  10.1016/j.foodchem.2018.08.003
    [35] Shen H W, Cao M J, Cai Q F, et al. Purification, cloning, and immunological characterization of arginine kinase, a novel allergen of Octopus fangsiao[J]. Journal of Agricultural and Food Chemistry,2012,60(9):2190−2199. doi:  10.1021/jf203779w
    [36] Mao H Y, Cao M J, Maleki S J, et al. Structural characterization and IgE epitope analysis of arginine kinase from Scylla paramamosain [J]. Molecular Immunology,2013,56(4):463−470. doi:  10.1016/j.molimm.2013.04.016
    [37] Ayuso R, Sánchez-Garcia S, Lin J, et al. Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age[J]. Journal of Allergy and Clinical Immunology. 2010;125(6): 1286-1293.
    [38] Yang Y, Cao M J, Alcocer M, et al. Mapping and characterization of antigenic epitopes of arginine kinase of Scylla paramamosain [J]. Molecular Immunology,2015,65(2):310−320. doi:  10.1016/j.molimm.2015.02.010
    [39] Fu L L, Wang J B, Ni S Q, et al. Identification of allergenic epitopes and critical amino acids of major allergens in Chinese shrimp (Penaeus chinensis) by immunoinformatics coupled with competitive-binding strategy[J]. Journal of Agricultural and Food Chemistry,2018,66(11):2944−2953 (in Chinese). doi:  10.1021/acs.jafc.7b06042
    [40] Shiomi K, Sato Y, Hamamoto S, et al. Sarcoplasmic calcium-binding protein: Identification as a new allergen of the black tiger shrimp Penaeus monodon [J]. International Archives of Allergy and Immunology,2008,146(2):91−98. doi:  10.1159/000113512
    [41] Chen H L, Cao M J, Cai Q F, et al. Purification and characterisation of sarcoplasmic calcium-binding protein, a novel allergen of red swamp crayfish (Procambarus clarkii)[J]. Food Chemistry,2013,139(1-4):213−223. doi:  10.1016/j.foodchem.2013.01.119
    [42] Hu M J, Liu G Y, Yang Y, et al. Cloning, expression, and the effects of processing on sarcoplasmic calcium-binding protein: An important allergen in mud crab[J]. Journal of Agricultural and Food Chemistry,2017,65(30):6247−6257. doi:  10.1021/acs.jafc.7b02381
    [43] Han T J, Liu M, Huan F, et al. Identification and cross-reactivity analysis of sarcoplasmic-calcium-binding protein: A novel allergen in Crassostrea angulata [J]. Journal of Agricultural and Food Chemistry,2020,68(18):5221−5231. doi:  10.1021/acs.jafc.0c01543
    [44] Morii A, Mita H, Ishizaki S, et al. Importance of conformation for the IgE reactivity of sarcoplasmic calcium-binding protein from the black tiger shrimp Penaeus monodon [J]. European Food Research and Technology,2013,236(1):165−170. doi:  10.1007/s00217-012-1867-8
    [45] Zhang Y X, Chen H L, Maleki S J, et al. Purification, characterization, and analysis of the allergenic properties of myosin light chain in Procambarus clarkii [J]. Journal of Agricultural and Food Chemistry,2015,63(27):6271−6282. doi:  10.1021/acs.jafc.5b01318
    [46] Ayuso R, Grishina G, Bardina L, et al. Myosin light chain is a novel shrimp allergen, Lit v 3[J]. The Journal of Allergy and Clinical Immunology,2008,122(4):795−802. doi:  10.1016/j.jaci.2008.07.023
    [47] Li M S, Xia F, Liu M, et al. Cloning, expression, and epitope identification of myosin light chain 1: An allergen in mud crab[J]. Journal of Agricultural and Food Chemistry,2019,67(37):10458−10469. doi:  10.1021/acs.jafc.9b04294
    [48] Yang Y, Yan H F, Zhang Y X, et al. Expression and epitope identification of myosin light chain isoform 1, an allergen in Procambarus clarkii [J]. Food Chemistry,2020,317:126422. doi:  10.1016/j.foodchem.2020.126422
    [49] Lee C H, Wu C C, Tyan Y C, et al. Identification of pyruvate kinase as a novel allergen in whiteleg shrimp (Litopenaeus vannamei) by specific-IgE present in patients with shrimp allergy[J]. Food Chemistry,2018,258:359−365. doi:  10.1016/j.foodchem.2018.03.088
    [50] Yang Y, Chen Z W, Hurlburt B K, et al. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao [J]. Molecular Immunology,2017,85:35−46. doi:  10.1016/j.molimm.2017.02.004
    [51] Yang Y, Hu M J, Jin T C, et al. A comprehensive analysis of the allergenicity and IgE epitopes of myosinogen allergens in Scylla paramamosain [J]. Clinical and Experimental Allergy,2019,49(1):108−119. doi:  10.1111/cea.13266
    [52] Yang Y, Zhang Y X, Liu M, et al. Triosephosphate isomerase and filamin c share common epitopes as novel allergens of Procambarus clarkii [J]. Journal of Agricultural and Food Chemistry,2017,65(4):950−963. doi:  10.1021/acs.jafc.6b04587
    [53] Suzuki M, Kobayashi Y, Hiraki Y, et al. Paramyosin of the disc abalone Haliotis discus hannai: Identification as a new allergen and cross-reactivity with tropomyosin[J]. Food Chemistry,2011,124(3):921−926. doi:  10.1016/j.foodchem.2010.07.020
    [54] Sicherer S H, Munoz-Furlong A, Sampson H A. Prevalence of seafood allergy in the United States determined by a random telephone survey[J]. The Journal of Allergy and Clinical Immunology,2004,114(1):159−165. doi:  10.1016/j.jaci.2004.04.018
    [55] Wong L, Huang C H, Lee B W. Shellfish and house dust mite allergies: Is the link tropomyosin?[J]. Allergy, Asthma & Immunology Research,2016,8(2):101−106.
    [56] Ruethers T, Taki A C, Johnston E B, et al. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Molecular Immunology. 2018, 100: 28-57.
    [57] Nugraha R, Kamath S D, Johnston E, et al. Conservation analysis of B-cell allergen epitopes to predict clinical cross-reactivity between shellfish and inhalant invertebrate allergens[J]. Frontiers in Immunology,2019,10:2676. doi:  10.3389/fimmu.2019.02676
    [58] 程伟, 高金燕, 李 欣, 等. 多酚氧化酶交联β-酪蛋白的抗原性变化初步研究[J]. 食品工业科技,2012,33(8):219−224.
    [59] Liu G Y, Hu M J, Sun L C, et al. Allergenicity and oral tolerance of enzymatic cross-linked tropomyosin evaluated using cell and mouse models[J]. Journal of Agricultural and Food Chemistry,2017,65(10):2205−2213. doi:  10.1021/acs.jafc.6b05816
    [60] Yuan F Z, Lv L T, Li Z X, et al. Effect of transglutaminase-catalyzed glycosylation on the allergenicity and conformational structure of shrimp (Metapenaeus ensis) tropomyosin[J]. Food Chemistry,2017,219:215−222. doi:  10.1016/j.foodchem.2016.09.139
    [61] Fei D X, Liu Q M, Chen F, et al. Assessment of the sensitizing capacity and allergenicity of enzymatic cross-linked arginine kinase, the crab allergen[J]. Molecular Nutrition & Food Research,2016,60(7):1707−1718.
    [62] 周丹, 郑建仙, 邓雯婷. 基于美拉德反应的鳕鱼过敏蛋白消减技术研究[J]. 食品与机械,2020,36(4):21−25.
    [63] Zhang Z Y, Xiao H, Zhang X F, et al. Conformation, allergenicity and human cell allergy sensitization of tropomyosin from Exopalaemon modestus: Effects of deglycosylation and maillard reaction[J]. Food Chemistry,2019,276:520−527. doi:  10.1016/j.foodchem.2018.10.032
    [64] Han X Y, Yang H, Rao S T, et al. The maillard reaction reduced the sensitization of tropomyosin and arginine kinase from Scylla paramamosain, simultaneously[J]. Journal of Agricultural and Food Chemistry,2018,66(11):2934−2943. doi:  10.1021/acs.jafc.7b05195
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  53
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 网络出版日期:  2021-06-08
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回

    重要通知

    期待您的加入:《食品工业科技》2023年春招市场专员