Research Progress on Epitopes and Cross-reactivity of Shellfish Allergens
-
摘要: 贝类(Shellfish)包括甲壳类和软体类,具有很高的营养价值和经济价值。我国作为贝类生产及消费大国,由食用贝类引发的食物过敏问题日益增多。已报道的贝类食品致敏原有原肌球蛋白、精氨酸激酶、肌质钙结合蛋白、肌球蛋白轻链等。抗原表位是食品致敏原发挥作用的分子基础,明确不同致敏原的抗原表位,是深入分析其致敏性及交叉反应性的关键,也是定向消减致敏原致敏性的重要前提。本文介绍了贝类食品致敏原种类、抗原表位、交叉反应性和加工消减致敏原致敏性等方面的研究进展。Abstract: Shellfish, including crustaceans and molluscs, have high nutritional value and economic value. As a big producer and consumer of shellfish, food allergies caused by eating shellfish are increasing in China. The identified shellfish allergens include tropomyosin, arginine kinase, sarcoplasmic-calcium-binding protein, myosin light chain, etc. Epitope is the molecular basis for the action of allergens. To identify antigenic epitopes of different allergens is the key to further analysis of their sensitization and cross-reactivity, and is also an important prerequisite for directional reduction of sensitization. In this paper, the research progress of shellfish allergen species, antigenic epitopes, cross-reactivity and processing reduction allergen sensitization are introduced.
-
Key words:
- shellfish /
- food allergy /
- allergen /
- epitope /
- cross-reactivity /
- allergenicity reducing
-
表 1 贝类四种常见致敏原的构象表位
Table 1. Conformational epitopes of four commonly shellfish allergens
致敏原 构象表位 TM[27] K5A3K6Q9D2I4A10I4 L88I92A86L94R90V85 K128R133S134L135V129N132R125S136S134 L169V172L176M171V165A170L176A174L169 N230A229A234K226T227K231A235A237 I270K268K264Y267L274E263I270T271 T277Q276T277S279F278L274S282L281S279 AK[38, 51] L17A19A20T21D22C23K24K28V58L61D62 G105D106V107N108Q109F110V247F336 L46G47A48N137P138C139L140T141Q144N199 S153S154T155S157N158L159L163T166R256 S157G165T166Y167Y168P169V177L181I182H212D214 K146P169L170T171G172M173L181L187P205T206G207 T171Q196N199R202Y203W204P205T206 I121H185K189G310T311R312T316A318E319G320V322 SCP[51] A34L35N37T38L39I40G42R43Y51 L35N37T38L39I40E41G42R43N54T112 R43G44E45F46S48A50Y51A52 N37A50A52N53N54Q55K56I57 MLC[48] N41N43P44T45L46A47I48I49V75G82 Y84S83Y84E85F87M88L146K147K148 F87G82S83Y84E85D86F87V90L91L146 F87A81G82E85F87M88V90L91L146 N99K96S97E98N99G100T101Y104F139 -
[1] Venter C, Patil V, Grundy J, et al. Prevalence and cumulative incidence of food hyper-sensitivity in the first 10 years of life[J]. Pediatric Allergy and Immunology,2016,27(5):452−458. doi: 10.1111/pai.12564 [2] Gupta R S, Warren C M, Smith B M, et al. Prevalence and severity of food allergies among adults[J]. JAMA Network Open,2019,2(1):e185630. doi: 10.1001/jamanetworkopen.2018.5630 [3] Leung A S Y, Wong G W K, Tang M L K. Food allergy in the developing world[J]. Journal of Allergy and Clinical Immunology,2018,141(1):76−78. doi: 10.1016/j.jaci.2017.11.008 [4] 张雅蓉, 陈云, 赵艾, 等. 中国3~12岁儿童自报食物过敏与食物不耐受的相关因素分析[J]. 卫生研究,2015,44(2):226−231. [5] Gonzalez-Estrada A, Silvers S K, Klein A, et al. Epidemiology of anaphylaxis at a tertiary care center[J]. Annals of Allergy, Asthma & Immunology,2017,118(1):80−85. [6] Moonesinghe H, Mackenzie H, Venter C, et al. Prevalence of fish and shellfish allergy[J]. Annals of Allergy, Asthma & Immunology,2016,117(3):264−272. [7] Loh W, Tang M L K. The epidemiology of food allergy in the global context[J]. International Journal of Environmental Research and Public Health,2018,15(9):2043. doi: 10.3390/ijerph15092043 [8] Hao G D, Lai X X, Song Z J, et al. Self-reported questionnaire survey on the prevalence and symptoms of adverse food reactions in patients with chronic inhalant diseases in Tangshan city, China[J]. Allergy, Asthma & Clinical Immunology,2018,14(1):3−6. [9] Wai C Y Y, Leung N Y H, Chu K H, et al. Overcoming shellfish allergy: How far have we come?[J]. International Journal of Molecular Sciences,2020,21(6):2234. doi: 10.3390/ijms21062234 [10] Brough H A, Liu A H, Sicherer S, et al. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy[J]. Journal of Allergy and Clinical Immunology,2015,135(1):164−170. doi: 10.1016/j.jaci.2014.10.007 [11] Negi S S, Braun W. Cross-React: A new structural bioinformatics method for predicting allergen cross-reactivity[J]. Bioinformatics,2017,33(7):1014−1020. [12] Leung N Y, Wai C Y, Ho M H, et al. Screening and identification of mimotopes of the major shrimp allergen tropomyosin using one-bead-one-compound peptide libraries[J]. Cellular & Molecular Immunology,2017,14(3):308−318. [13] Scott J K, Smith G P. Searching for peptide ligands with an epitope library[J]. Science,1990,249(4967):386−390. doi: 10.1126/science.1696028 [14] 罗春萍, 冯娟, 项缨, 等. 辐照技术消减食物过敏原致敏性研究进展[J]. 核农学报,2020,34(6):1272−1280. doi: 10.11869/j.issn.100-8551.2020.06.1272 [15] Motoyama K, Suma Y, Ishizaki S, et al. Identification of tropomyosins as major allergens in antarctic krill and mantis shrimp and their amino acid sequence characteristics[J]. Marine Biotechnology,2008,10(6):709−718. doi: 10.1007/s10126-008-9109-6 [16] Yu H L, Cao M J, Cai Q F, et al. Effects of different processing methods on digestibility of Scylla paramamosain allergen (tropomyosin)[J]. Food and Chemical Toxicology,2011,49(4):791−798. doi: 10.1016/j.fct.2010.11.046 [17] Hoffman D R, Day E D, Miller J S. The major heat-stable allergen of shrimp[J]. Annals of Allergy,1981,47(1):17−22. [18] Shanti K N, Martin B M, Nagpal S, et al. Identification of tropomyosin as the major shrimp allergen and characterization of its IgE-binding epitopes[J]. Journal of Immunology,1993,151(10):5354−5363. [19] Leung P S, Chen Y C, Mykles D L, et al. Molecular identification of the lobster muscle protein tropomyosin as a seafood allergen[J]. Molecular Marine Biology and Biotechnology,1998,7(1):12−20. [20] Rahman A M A, Lopata A L, Randell E W, et al. Absolute quantification method and validation of airborne snow crab allergen tropomyosin using tandem mass spectrometry[J]. Analytica Chimica Acta,2010,681(1-2):49−55. doi: 10.1016/j.aca.2010.09.040 [21] Ishikawa M, Ishida M, Shimakura K, et al. Tropomyosin, the major oyster Crassostrea gigas allergen and its IgE-binding epitopes[J]. Journal of Food Science,1998,63(1):44−47. doi: 10.1111/j.1365-2621.1998.tb15672.x [22] Hiroshi M, Hiromi F, Yoshimasa I, et al. Identification of the first major allergen of a squid (Todarodes pacificus)[J]. Journal of Allergy and Clinical Immunology,1996,98(5):948−953. doi: 10.1016/S0091-6749(96)80011-X [23] Chu K H, Wong S H, Leung P. Tropomyosin is the major mollusk allergen: Reverse transcriptase polymerase chain reaction, expression and IgE reactivity[J]. Marine Biotechnology,2000,2(5):499−509. doi: 10.1007/s101260000035 [24] Ayuso R, Lehrer S B, Reese G. Identification of continuous, allergenic regions of the major shrimp allergen Pen a 1 (tropomyosin)[J]. International Archives of Allergy and Immunology,2002,127(1):27−37. doi: 10.1159/000048166 [25] Zhang Z, Li X M, Xiao H, et al. IgE-binding epitope mapping of tropomyosin allergen (Exo m 1) from Exopalaemon modestus, the freshwater Siberian prawn[J]. Food Chemistry,2020,309:125603. doi: 10.1016/j.foodchem.2019.125603 [26] Ayuso R, Sánchez-Garcia S, Pascal M, et al. Is epitope recognition of shrimp allergens useful to predict clinical reactivity?[J]. Clinical & Experimental Allergy,2012,42(2):293−304. [27] Liu G Y, Mei X J, Hu M J, et al. Analysis of the allergenic epitopes of tropomyosin from mud crab using phage display and site-directed mutagenesis[J]. Journal of Agricultural and Food Chemistry,2018,66(34):9127−9137. doi: 10.1021/acs.jafc.8b03466 [28] Ishikawa M, Suzuki F, Ishida M, et al. Identification of tropomyosin as a major allergen in the octopus Octopus vulgaris and elucidation of its IgE-binding epitopes[J]. Fisheries Science,2001,67(5):934−942. doi: 10.1046/j.1444-2906.2001.00344.x [29] Fang L, Li G, Zhang J, et al. Identification and mutational analysis of continuous, immunodominant epitopes of the major oyster allergen Crag 1[J]. Clinical Immunology,2019,201:20−29. doi: 10.1016/j.clim.2019.02.008 [30] García-Orozco K D, Aispuro-Hernández E, Yepiz-Plascencia G, et al. Molecular characterization of arginine kinase, an allergen from the shrimp Litopenaeus vannamei[J]. International Archives of Allergy and Immunology,2007,144(1):23−28. doi: 10.1159/000102610 [31] Yu C J, Lin Y F, Chiang B L, et al. Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2[J]. The Journal of Immunology,2003,170(1):445−453. doi: 10.4049/jimmunol.170.1.445 [32] Abdel Rahman A M, Kamath S D, Lopata A L, et al. Biomolecular characterization of allergenic proteins in snow crab (Chionoecetes opilio) and de novo sequencing of the second allergen arginine kinase using tandem mass spectrometry[J]. Journal of Proteomics,2011,74(2):231−241. doi: 10.1016/j.jprot.2010.10.010 [33] Lopez Zavala A A, Sotelo Mundo R R, Garcia Orozco K D, et al. Crystallization and X-ray diffraction studies of arginine kinase from the white Pacific shrimp Litopenaeus vannamei [J]. Acta Crystallographica Section F-Structural Biology Communications,2012,68(7):783−785. doi: 10.1107/S1744309112020180 [34] Yang Y, Liu G Y, Yang H, et al. Crystal structure determination of Scylla paramamosain arginine kinase, an allergen that may cause cross-reactivity among invertebrates[J]. Food Chemistry,2019,271:597−605. doi: 10.1016/j.foodchem.2018.08.003 [35] Shen H W, Cao M J, Cai Q F, et al. Purification, cloning, and immunological characterization of arginine kinase, a novel allergen of Octopus fangsiao[J]. Journal of Agricultural and Food Chemistry,2012,60(9):2190−2199. doi: 10.1021/jf203779w [36] Mao H Y, Cao M J, Maleki S J, et al. Structural characterization and IgE epitope analysis of arginine kinase from Scylla paramamosain [J]. Molecular Immunology,2013,56(4):463−470. doi: 10.1016/j.molimm.2013.04.016 [37] Ayuso R, Sánchez-Garcia S, Lin J, et al. Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age[J]. Journal of Allergy and Clinical Immunology. 2010;125(6): 1286-1293. [38] Yang Y, Cao M J, Alcocer M, et al. Mapping and characterization of antigenic epitopes of arginine kinase of Scylla paramamosain [J]. Molecular Immunology,2015,65(2):310−320. doi: 10.1016/j.molimm.2015.02.010 [39] Fu L L, Wang J B, Ni S Q, et al. Identification of allergenic epitopes and critical amino acids of major allergens in Chinese shrimp (Penaeus chinensis) by immunoinformatics coupled with competitive-binding strategy[J]. Journal of Agricultural and Food Chemistry,2018,66(11):2944−2953 (in Chinese). doi: 10.1021/acs.jafc.7b06042 [40] Shiomi K, Sato Y, Hamamoto S, et al. Sarcoplasmic calcium-binding protein: Identification as a new allergen of the black tiger shrimp Penaeus monodon [J]. International Archives of Allergy and Immunology,2008,146(2):91−98. doi: 10.1159/000113512 [41] Chen H L, Cao M J, Cai Q F, et al. Purification and characterisation of sarcoplasmic calcium-binding protein, a novel allergen of red swamp crayfish (Procambarus clarkii)[J]. Food Chemistry,2013,139(1-4):213−223. doi: 10.1016/j.foodchem.2013.01.119 [42] Hu M J, Liu G Y, Yang Y, et al. Cloning, expression, and the effects of processing on sarcoplasmic calcium-binding protein: An important allergen in mud crab[J]. Journal of Agricultural and Food Chemistry,2017,65(30):6247−6257. doi: 10.1021/acs.jafc.7b02381 [43] Han T J, Liu M, Huan F, et al. Identification and cross-reactivity analysis of sarcoplasmic-calcium-binding protein: A novel allergen in Crassostrea angulata [J]. Journal of Agricultural and Food Chemistry,2020,68(18):5221−5231. doi: 10.1021/acs.jafc.0c01543 [44] Morii A, Mita H, Ishizaki S, et al. Importance of conformation for the IgE reactivity of sarcoplasmic calcium-binding protein from the black tiger shrimp Penaeus monodon [J]. European Food Research and Technology,2013,236(1):165−170. doi: 10.1007/s00217-012-1867-8 [45] Zhang Y X, Chen H L, Maleki S J, et al. Purification, characterization, and analysis of the allergenic properties of myosin light chain in Procambarus clarkii [J]. Journal of Agricultural and Food Chemistry,2015,63(27):6271−6282. doi: 10.1021/acs.jafc.5b01318 [46] Ayuso R, Grishina G, Bardina L, et al. Myosin light chain is a novel shrimp allergen, Lit v 3[J]. The Journal of Allergy and Clinical Immunology,2008,122(4):795−802. doi: 10.1016/j.jaci.2008.07.023 [47] Li M S, Xia F, Liu M, et al. Cloning, expression, and epitope identification of myosin light chain 1: An allergen in mud crab[J]. Journal of Agricultural and Food Chemistry,2019,67(37):10458−10469. doi: 10.1021/acs.jafc.9b04294 [48] Yang Y, Yan H F, Zhang Y X, et al. Expression and epitope identification of myosin light chain isoform 1, an allergen in Procambarus clarkii [J]. Food Chemistry,2020,317:126422. doi: 10.1016/j.foodchem.2020.126422 [49] Lee C H, Wu C C, Tyan Y C, et al. Identification of pyruvate kinase as a novel allergen in whiteleg shrimp (Litopenaeus vannamei) by specific-IgE present in patients with shrimp allergy[J]. Food Chemistry,2018,258:359−365. doi: 10.1016/j.foodchem.2018.03.088 [50] Yang Y, Chen Z W, Hurlburt B K, et al. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao [J]. Molecular Immunology,2017,85:35−46. doi: 10.1016/j.molimm.2017.02.004 [51] Yang Y, Hu M J, Jin T C, et al. A comprehensive analysis of the allergenicity and IgE epitopes of myosinogen allergens in Scylla paramamosain [J]. Clinical and Experimental Allergy,2019,49(1):108−119. doi: 10.1111/cea.13266 [52] Yang Y, Zhang Y X, Liu M, et al. Triosephosphate isomerase and filamin c share common epitopes as novel allergens of Procambarus clarkii [J]. Journal of Agricultural and Food Chemistry,2017,65(4):950−963. doi: 10.1021/acs.jafc.6b04587 [53] Suzuki M, Kobayashi Y, Hiraki Y, et al. Paramyosin of the disc abalone Haliotis discus hannai: Identification as a new allergen and cross-reactivity with tropomyosin[J]. Food Chemistry,2011,124(3):921−926. doi: 10.1016/j.foodchem.2010.07.020 [54] Sicherer S H, Munoz-Furlong A, Sampson H A. Prevalence of seafood allergy in the United States determined by a random telephone survey[J]. The Journal of Allergy and Clinical Immunology,2004,114(1):159−165. doi: 10.1016/j.jaci.2004.04.018 [55] Wong L, Huang C H, Lee B W. Shellfish and house dust mite allergies: Is the link tropomyosin?[J]. Allergy, Asthma & Immunology Research,2016,8(2):101−106. [56] Ruethers T, Taki A C, Johnston E B, et al. Seafood allergy: A comprehensive review of fish and shellfish allergens[J]. Molecular Immunology. 2018, 100: 28-57. [57] Nugraha R, Kamath S D, Johnston E, et al. Conservation analysis of B-cell allergen epitopes to predict clinical cross-reactivity between shellfish and inhalant invertebrate allergens[J]. Frontiers in Immunology,2019,10:2676. doi: 10.3389/fimmu.2019.02676 [58] 程伟, 高金燕, 李 欣, 等. 多酚氧化酶交联β-酪蛋白的抗原性变化初步研究[J]. 食品工业科技,2012,33(8):219−224. [59] Liu G Y, Hu M J, Sun L C, et al. Allergenicity and oral tolerance of enzymatic cross-linked tropomyosin evaluated using cell and mouse models[J]. Journal of Agricultural and Food Chemistry,2017,65(10):2205−2213. doi: 10.1021/acs.jafc.6b05816 [60] Yuan F Z, Lv L T, Li Z X, et al. Effect of transglutaminase-catalyzed glycosylation on the allergenicity and conformational structure of shrimp (Metapenaeus ensis) tropomyosin[J]. Food Chemistry,2017,219:215−222. doi: 10.1016/j.foodchem.2016.09.139 [61] Fei D X, Liu Q M, Chen F, et al. Assessment of the sensitizing capacity and allergenicity of enzymatic cross-linked arginine kinase, the crab allergen[J]. Molecular Nutrition & Food Research,2016,60(7):1707−1718. [62] 周丹, 郑建仙, 邓雯婷. 基于美拉德反应的鳕鱼过敏蛋白消减技术研究[J]. 食品与机械,2020,36(4):21−25. [63] Zhang Z Y, Xiao H, Zhang X F, et al. Conformation, allergenicity and human cell allergy sensitization of tropomyosin from Exopalaemon modestus: Effects of deglycosylation and maillard reaction[J]. Food Chemistry,2019,276:520−527. doi: 10.1016/j.foodchem.2018.10.032 [64] Han X Y, Yang H, Rao S T, et al. The maillard reaction reduced the sensitization of tropomyosin and arginine kinase from Scylla paramamosain, simultaneously[J]. Journal of Agricultural and Food Chemistry,2018,66(11):2934−2943. doi: 10.1021/acs.jafc.7b05195 -