• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

等离子体活化水对沙门氏菌的灭活作用及机制研究

相启森 张嵘 杜桂红 王利敏 蒋爱民

相启森,张嵘,杜桂红,等. 等离子体活化水对沙门氏菌的灭活作用及机制研究[J]. 食品工业科技,2021,42(8):138−143. doi:  10.13386/j.issn1002-0306.2020080241
引用本文: 相启森,张嵘,杜桂红,等. 等离子体活化水对沙门氏菌的灭活作用及机制研究[J]. 食品工业科技,2021,42(8):138−143. doi:  10.13386/j.issn1002-0306.2020080241
XIANG Qisen, ZHANG Rong, DU Guihong, et al. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium[J]. Science and Technology of Food Industry, 2021, 42(8): 138−143. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080241
Citation: XIANG Qisen, ZHANG Rong, DU Guihong, et al. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium [J]. Science and Technology of Food Industry, 2021, 42(8): 138−143. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020080241

等离子体活化水对沙门氏菌的灭活作用及机制研究

doi: 10.13386/j.issn1002-0306.2020080241
基金项目: “十三五”重点研发计划(2018YFD0400603);中国博士后科学基金面上项目(2018M632765)
详细信息
    作者简介:

    相启森(1984−),男,博士,副教授,研究方向:畜产品安全控制,E-mail:xiangqisen2006@163.com

    通讯作者:

    蒋爱民(1962−),男,博士,教授,研究方向:畜产品加工,E-mail:jiangaimin20000@163.com

  • 中图分类号: TS201.3

Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium

  • 摘要: 等离子体活化水(Plasma-activated water,PAW)是一种新兴的非热杀菌技术,在食品保鲜等领域具有广泛的应用前景。本文研究了PAW处理对沙门氏菌(S. typhimurium)的杀灭效果及其作用机制。将经等离子体放电30、60和90 s得到的PAW分别记为PAW30、PAW60和PAW90。结果表明,PAW对S. typhimurium的杀菌效果随放电时间的延长而逐渐增强。当初始浓度为7.91 lg CFU/mL时,PAW60处理10 min后S. typhimurium活菌数减少了4.22 lg CFU/mL。扫描电镜(Scanning electron microscope,SEM)结果表明,PAW60处理后S. typhimurium细胞形态发生明显变化。经PAW60处理后,S. typhimurium胞外核酸和蛋白含量均显著(P<0.05)升高,表明其细胞膜通透性显著(P<0.05)增强。此外,PAW60处理破坏了S. typhimurium细胞外膜完整性,造成胞内活性氧水平显著(P<0.05)升高。以上实验结果表明,PAW处理能够有效灭活S. typhimurium,其作用机理可能与其破坏细胞结构、增强细胞膜通透性等有关。研究结果为PAW在食品杀菌保鲜中的应用提供了科学理论依据。
  • 图  1  放电时间(A)和反应时间(B)对PAW杀灭S. typhimurium效果的影响

    Figure  1.  Effects of discharge time (A) and treatment time (B) on inactivation efficacy of PAW against S. typhimurium cells

    注:不同小写字母表示差异显著(LSD法,P<0.05);图3图6同。

    图  2  PAW60处理对S. typhimurium细胞形态的影响

    Figure  2.  Effect of PAW60 treatment on the morphology of S. typhimurium cells

    图  3  PAW60处理对S. typhimurium核酸(A)和蛋白释放量(B)的影响

    Figure  3.  Effects of PAW60 treatment on nucleic acids (A) and proteins (B) leakages of S. typhimurium

    图  4  PAW60处理对S. typhimurium细胞中PI荧光强度的影响

    Figure  4.  Effect of PAW60 treatment on PI fluorescence intensity of S. typhimurium cells

    图  5  PAW60处理对S. typhimurium NPN荧光强度的影响

    Figure  5.  Effect of PAW60 treatment on NPN fluorescence intensity of S. typhimurium

    图  6  PAW60对S. typhimurium胞内活性氧水平的影响

    Figure  6.  Effect of PAW60 on the intracellular reactive oxygen levels of S. typhimurium cells

  • [1] 褚召娟, 李磊, 闵世豪, 等. 蓝光对阪崎肠杆菌的杀菌及机制研究[J]. 现代食品科技,2019,35(7):13−17, 210.
    [2] 史展, 王周利, 岳田利, 等. 低温等离子体杀灭食源性致病菌的研究进展[J/OL]. 食品工业科技: 1−13[2020-08-13].http://kns.cnki.net/kcms/detail/11.1759.TS.20200811.0904.002.html.
    [3] Kim S S, Park S H, Kim S H, et al. Synergistic effect of ohmic heating and UV-C irradiation for inactivation of Escherichia coli O157: H7, Salmonella typhimurium and Listeria monocytogenes in buffered peptone water and tomato juice[J]. Food Control,2019,102:69−75. doi:  10.1016/j.foodcont.2019.03.011
    [4] Sauceda-Galvez J N, Tió-Coma M, Martinez-Garcia M, et al. Effect of single and combined UV-C and ultra-high pressure homogenisation treatments on inactivation of Alicyclobacillus acidoterrestris spores in apple juice[J]. Innovative Food Science & Emerging Technologies,2020,60:102299.
    [5] Mendes-Oliveira G, Jin TZ, Campanella, O H. Modeling the inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density[J]. Journal of Food Engineering,2020,282:110001. doi:  10.1016/j.jfoodeng.2020.110001
    [6] Xiang Q S, Fan L M, Zhang R, et al. Effect of UVC light-emitting diodes on apple juice: Inactivation of Zygosaccharomyces rouxii and determination of quality[J]. Food Control,2020,111:107082. doi:  10.1016/j.foodcont.2019.107082
    [7] Li Y Y, Wu C Q. Enhanced inactivation of Salmonella typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide[J]. Food Research International,2013,54(2):1553−1559. doi:  10.1016/j.foodres.2013.09.012
    [8] 童钰, 陆海霞, 励建荣. 超高压处理对副溶血性弧菌细胞膜组成成分的影响[J]. 微生物学报,2012,52(10):1244−1250.
    [9] 濮晨熹, 郭大滨, 胡沔, 等. 颗粒物的庇护作用对紫外线消毒效果的影响[J]. 中国给水排水,2017,33(13):73−76.
    [10] 熊中奎, 郎娟, 夏国园. 化学消毒剂二氧化氯抗微生物作用及应用[J]. 现代预防医学,2011,38(6):1114−1116, 1122.
    [11] 相启森, 张嵘, 范刘敏, 等. 大气压冷等离子体在鲜切果蔬保鲜中的应用研究进展[J/OL]. 食品工业科技: 1−11[2020-08-21]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200603.1514.011.html.
    [12] Fernández A, Noriega E, Thompson A. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology[J]. Food Microbiology,2013,33(1):24−29. doi:  10.1016/j.fm.2012.08.007
    [13] 袁园, 黄明明, 魏巧云, 等. 等离子体活化水对鲜切生菜杀菌效能及贮藏品质影响[J/OL]. 食品工业科技: 110[2020-08-21]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200502.1040.018.html.
    [14] 汪家权, 周小霞, 许子牧, 等. 等离子体活化水灭活金黄色葡萄球菌生物膜[J]. 环境工程学报,2019,13(7):1766−1772. doi:  10.12030/j.cjee.201901156
    [15] Xiang Q S, Liu X F, Li J G, et al. Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice[J]. Food Chemistry,2018,254:201−207. doi:  10.1016/j.foodchem.2018.02.008
    [16] Moussa M, Perrier-Cornet J M, Gervais P. Damage in Escherichia coli cells treated with a combination of high hydrostatic pressure and subzero temperature[J]. Applied and Environmental Microbiology,2007,73(20):6508−6518. doi:  10.1128/AEM.01212-07
    [17] Helander I M, Mattila-Sandholm T. Fluorometric assessment of gram-negative bacterial permeabilization[J]. Journal of Applied Microbiology,2000,88(2):213−219. doi:  10.1046/j.1365-2672.2000.00971.x
    [18] 马良军, 王佳媚, 黄明明, 等. 不同处理条件对介质阻挡放电低温等离子体杀菌效果及影响机理研究[J]. 微生物学报,2019,59(8):1512−1521.
    [19] 朱莉华, 李燕, 仝其根, 等. 大气滑动弧放电对沙门氏菌的灭活机制及在鸡蛋保鲜中的应用[J]. 食品科学,2017,38(9):133−137. doi:  10.7506/spkx1002-6630-201709021
    [20] Rosenberg M, Azevedo N F, Ivask A. Propidium iodide staining underestimates viability of adherent bacterial cells[J]. Scientific Reports,2019,9:6483. doi:  10.1038/s41598-019-42906-3
    [21] Xiang Q S, Wang W J, Zhao D B, et al. Synergistic inactivation of Escherichia coli O157: H7 by plasma-activated water and mild heat[J]. Food Control,2019,106:106741. doi:  10.1016/j.foodcont.2019.106741
    [22] 聂新颖, 廖红梅, 刘元法. 过氧化氢处理中鼠伤寒沙门氏菌VBNC态形成及其机制解析[J]. 食品与机械,2019,35(7):67−73.
    [23] 周云冬. 植物提取物抑菌活性及抑菌机理[D]. 无锡: 江南大学, 2019.
    [24] Tommassen J. Assembly of outer-membrane proteins in bacteria and mitochondria[J]. Microbiology,2010,156(9):2587−2596. doi:  10.1099/mic.0.042689-0
    [25] Muheim C, Götzke H, Eriksson A U, et al. Increasing the permeability of Escherichia coli using MAC13243[J]. Scientific Reports,2017,7:17629. doi:  10.1038/s41598-017-17772-6
    [26] Halder S, Yadav K K, Sarkar R, et al. Alteration of Zeta potential and membrane permeability in bacteria: A study with cationic agents[J]. Springer Plus,2015,4:672. doi:  10.1186/s40064-015-1476-7
    [27] Xiang Q S, Kang C D, Niu L Y, et al. Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2[J]. LWT-Food Science and Technology,2018,96:395−401. doi:  10.1016/j.lwt.2018.05.059
    [28] Iswarya A, Anjugam M, Shanthini S, et al. Protective activity of beta-1, 3-glucan binding protein against AAPH induced oxidative stress in Saccharomyces cerevisiae[J]. International Journal of Biological Macromolecules,2019,138:890−902. doi:  10.1016/j.ijbiomac.2019.07.130
    [29] Santos A L, Gomes N C M, Henriques I, et al. Contribution of reactive oxygen species to UV-B-induced damage in bacteria[J]. Journal of Photochemistry and Photobiology B: Biology,2012,117:40−46. doi:  10.1016/j.jphotobiol.2012.08.016
  • 加载中
图(6)
计量
  • 文章访问数:  1328
  • HTML全文浏览量:  120
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 网络出版日期:  2021-02-27
  • 刊出日期:  2021-04-16

目录

    /

    返回文章
    返回

    重要通知

    1 权威:2022年度食品技术创新奖、产品创新奖发布

     2 喜讯: 《食品工业科技》被DOAJ收录

     3 快速见刊:客座主编专栏征稿-食源性功能物质挖掘及评价