Volatile Component Analysis of Sun-dried Green Tea in Menghai County Based on GC-IMS
-
摘要: 为探索云南省勐海县主产茶区的晒青毛茶的挥发性有机物特征,比较各乡镇茶叶之间的差异,本文运用GC-IMS技术对勐海县布朗山乡、勐宋乡、格朗和乡,每个乡镇4份样品,共计12份勐海大叶种晒青毛茶样品进行挥发性有机物检测和分析。PCA分析结果表明:12份样品可以分为两大组,布朗山乡的曼囡新寨茶(4号茶样)、勐宋乡的曼迈茶(8号茶样)、格朗和乡的南糯新路茶(10号茶样)为B组,剩余九份样品为A组。指纹图谱结果表明:B组的3份茶样的挥发性组分较相似,醛类、酯类含量均较高。A组样品中,布朗山乡的曼囡道坎茶(2号茶样)的醛类、酮类、酯类、醇类、烯类挥发性有机物组分种类和含量均较高,而格朗和乡的南糯石头一队茶(11号茶样)的酯类物质非常丰富。综上分析,勐海地区3个乡镇的晒青毛茶在挥发性有机物组分上没有明显的乡镇聚集性,每个产区的晒青毛茶样都有各自的特征性挥发组分,布朗山乡的道坎茶(2号茶样)丰富的挥发性物质为优质晒青毛茶原料的选取提供了新方向,同时勐宋乡的曼囡河边寨茶(5号茶样)、格朗和乡的南糯石头一队茶(11号茶样)特殊的挥发性组分为晒青毛茶的拼配提供了依据。此外,本实验也说明GC-IMS技术用于茶叶样品挥发性有机组分的快速定性分析具有良好的可行性。
-
关键词:
- 气相色谱-离子迁移谱(GC-IMS) /
- 勐海晒青毛茶 /
- 挥发性组分
Abstract: In order to explore the characteristics of volatile organic compounds (VOC) of the sun-dried green tea in Menghai county of Yunnan province, compare the differences among different town’s tea samples, in this study, GC-IMS technology was used to detect and analyze volatile organic compounds in 12 Menghai big-leaf tea samples from Bulangshan, Mengsong and Gelanghe of Menghai county. And 4 tea samples was selected from the three towns. PCA analysis results showed that the 12 tea samples could be divided into two groups. Mannan new village (No.4 tea sample), Manmai (No.8 tea sample) and Nannuo new road (No.10 tea sample) were group B, and the rest of 9 samples were group A. The fingerprint of volatile compounds analysis results showed that group B had similar volatile components and their aldehydes, esters contents were higher. In the group A, Daokan tea of Mannan town (No.2 tea sample) had higher aldehydes, ketones, esters, alcohols and alkene volatile organic components. However, the ester substance of Nannuo Stone group1 tea (No.11 tea sample) was more richer than others. In conclusion, three towns' sun-dried green tea samples had no obvious towns aggregation on the volatile organic compounds. The samples from each producing area had their own characteristic volatile components, Daokan tea’s (No.2 tea sample) rich volatile substances would provide new choices for the selection of quality sun-dried green tea materials. At the same time, Mannan hebianzhai (No.5 tea sample), and Nannuo stone group1 (No.11 tea sample) tea samples's special volatile organic compounds would provide the basis for Menghai sun-dried green tea's blending. In addition, this experiment also showed that GC-IMS technology would have good feasibility for the rapid qualitative analysis of volatile organic components in tea samples. -
表 1 勐海县12份晒青毛茶样品信息
Table 1. 12 Sun-dried green tea samples’ informations of Menghai county
编号 茶样来源 编号 茶样来源 茶样名称 1 布朗山乡曼囡村委会曼班一队上寨 7 勐宋乡曼金村委会曼开小组 曼开 2 布朗山乡曼囡村委会道坎小组 8 勐宋乡曼迈村委会曼迈小组 曼迈 3 布朗山乡班章村委会老曼峨小组 9 格朗和乡帕真村委会九二村 帕真 4 布朗山乡曼囡村委会曼囡新寨 10 格朗和乡南糯山村委会新路村 南糯新路 5 勐宋乡曼迈村委会河边寨 11 格朗和乡南糯山村委会石头一队 南糯石头一队 6 勐宋乡曼金村委会曼金囡小组 12 格朗和乡南糯山村委会水河寨 南糯水河寨 表 2 晒青毛茶样品的挥发性组分信息
Table 2. Sun-dried green tea samples’ volatile component informations
类别 编号 化学物质 中文名称 CAS号 分子式 分子量 保留指数 保留时间(s) 迁移时间 醛类 1 2-Undecenal 2-十一烯醛 C2463776 C11H20O 168.3 1396.8 916.36 1.48365 3 Decanal 癸醛 C112312 C10H20O 156.3 1274.3 740.106 1.54521 7 (E)-2-Nonenal 反式-2-壬醛 C18829566 C9H16O 140.2 1187.8 615.793 1.41046 8 Nonanal 壬醛(M) C124196 C9H18O 142.2 1107.8 500.727 1.47999 9 Nonanal 壬醛(D) C124196 C9H18O 142.2 1107.8 500.727 1.94638 15 (E)-2-Octenal 反式-2-辛烯醛(M) C2548870 C8H14O 126.2 1055.1 424.948 1.33328 16 (E)-2-Octenal 反式-2-辛烯醛(D) C2548870 C8H14O 126.2 1055.4 425.327 1.82168 18 Benzeneacetaldehyde 苯乙醛 C122781 C8H8O 120.2 1039.3 402.218 1.25737 22 (E,E)-2,4-Heptadienal (E,E)-2,4-庚二烯醛 C4313035 C7H10O 110.2 1012.2 363.197 1.19721 23 Octanal 正辛醛(M) C124130 C8H16O 128.2 1005.1 352.968 1.40918 24 Octanal 正辛醛(D) C124130 C8H16O 128.2 1004.8 352.589 1.82741 32 Benzaldehyde 苯甲醛(M) C100527 C7H6O 106.1 958.9 309.458 1.14985 33 Benzaldehyde 苯甲醛(D) C100527 C7H6O 106.1 958.4 309.076 1.47158 34 (E)-2-Heptenal (E)-2-庚烯醛(M) C18829555 C7H12O 112.2 954.7 306.022 1.25527 35 (E)-2-Heptenal (E)-2-庚烯醛(D) C18829555 C7H12O 112.2 953.8 305.259 1.66872 38 Heptanal 庚醛(M) C111717 C7H14O 114.2 899.9 260.582 1.33174 39 Heptanal 庚醛(D) C111717 C7H14O 114.2 901.0 261.423 1.69638 44 (E)-2-Hexenal 2-己烯醛(M) C6728263 C6H10O 98.1 843.5 229.741 1.18009 45 (E)-2-Hexenal 2-己烯醛(D) C6728263 C6H10O 98.1 844.1 230.021 1.51927 46 Furfural 糠醛 C98011 C5H4O2 96.1 823.4 219.648 1.08285 48 Hexanal 正己醛 C66251 C6H12O 100.2 786.0 200.939 1.5643 52 (E)-2-Pentenal 反式-2-戊烯醛(M) C1576870 C5H8O 84.1 738.9 182.632 1.10385 53 (E)-2-Pentenal 反式-2-戊烯醛(D) C1576870 C5H8O 84.1 737.3 181.989 1.36053 60 3-Methylbutanal 异戊醛 C590863 C5H10O 86.1 608.0 145.096 1.40759 56 Pentanal 戊醛(D) C110623 C5H10O 86.1 680.9 161.55 1.42128 57 Pentanal 戊醛(M) C110623 C5H10O 86.1 678.6 161.036 1.18513 59 2-Methyl-butanal 2-甲基丁醛 C96173 C5H10O 86.1 631.9 150.495 1.39818 63 Butanal 丁醛 C123728 C4H8O 72.1 552.3 132.499 1.28952 65 Methylpropanal 异丁醛 C78842 C4H8O 72.1 504.4 121.701 1.28096 75 2-Methylhexanal 2-正甲基-正己醛(M) C925542 C7H14O 114.2 880.5 248.301 1.3204 76 2-Methylhexanal 2-正甲基-正己醛(D) C925542 C7H14O 114.2 879.8 247.936 1.70567 醇类 2 Citronellol 香茅醇 C106229 C10H20O 156.3 1279.6 747.769 1.34514 10 Linalool 芳樟醇 C78706 C10H18O 154.3 1103.3 494.237 1.22148 13 Linalool oxide 氧化芳樟醇 C60047178 C10H18O2 170.3 1085.6 468.849 1.26186 19 2-Ethylhexanol 2-乙基己醇 C104767 C8H18O 130.2 1030.3 389.337 1.41921 28 1-Octen-3-ol 1-辛烯-3-醇(M) C3391864 C8H16O 128.2 983.7 330.073 1.15807 29 1-Octen-3-ol 1-辛烯-3-醇(D) C3391864 C8H16O 128.2 982.4 328.928 1.59753 30 3-Furanmethanol 3-呋喃甲醇 C4412913 C5H6O2 98.1 976.4 323.965 1.10741 43 1-Hexanol 正己醇 C111273 C6H14O 102.2 866.4 241.236 1.32248 49 1-Pentanol 1-戊醇(M) C71410 C5H12O 88.1 749.7 186.746 1.25387 50 1-Pentanol 1-戊醇(D) C71410 C5H12O 88.1 750.1 186.933 1.5134 51 2-Methyl-1-butanol 2-甲基丁醇 C137326 C5H12O 88.1 743.3 184.318 1.22492 66 2-Propanol 异丙醇 C67630 C3H8O 60.1 485.1 117.331 1.19455 68 Ethanol 乙醇 C64175 C2H6O 46.1 378.1 93.158 1.04606 72 Methanol 甲醇 C67561 CH4O 32.0 357.7 88.556 0.98535 84 3-Methyl-1-pentanol 3-甲基-1-戊醇 C589355 C6H14O 102.2 841.5 228.762 1.60923 酯类 4 Ethyl 2-phenylacetate 苯乙酸乙酯 C101973 C10H12O2 164.2 1238.8 689.101 1.29683 5 Methyl Salicylate 水杨酸甲酯 C119368 C8H8O3 152.1 1229.8 676.11 1.20016 6 Ethyl benzoate 苯甲酸乙酯 C93890 C9H10O2 150.2 1208.5 645.487 1.26291 11 Methyl benzoate 苯甲酸甲酯(M) C93583 C8H8O2 136.1 1093.3 479.915 1.22148 12 Methyl benzoate 苯甲酸甲酯(D) C93583 C8H8O2 136.1 1092.0 477.962 1.6059 25 Butyl butanoate 丁酸丁酯 C109217 C8H16O2 144.2 1000.6 346.528 1.3433 36 Butyrolactone γ-丁内酯 C96480 C4H6O2 86.1 916.8 274.601 1.08054 61 Ethyl Acetate 乙酸乙酯(M) C141786 C4H8O2 88.1 568.2 136.098 1.09701 62 Ethyl Acetate 乙酸乙酯(D) C141786 C4H8O2 88.1 569.9 136.484 1.33657 70 Butyl propanoate 丙酸丁酯(M) C590012 C7H14O2 130.2 906.1 265.711 1.28794 71 Butyl propanoate 丙酸丁酯(D) C590012 C7H14O2 130.2 906.9 266.383 1.72563 77 Butyl acetate 乙酸丁酯(M) C123864 C6H12O2 116.2 800.9 208.366 1.23685 78 Butyl acetate 乙酸丁酯(D) C123864 C6H12O2 116.2 800.6 208.244 1.61864 79 Ethyl propanoate 丙酸乙酯(M) C105373 C5H10O2 102.1 696.1 166.156 1.15083 80 Ethyl propanoate 丙酸乙酯(D) C105373 C5H10O2 102.1 693.3 165.091 1.45449 酮类 14 Acetophenone 苯乙酮 C98862 C8H8O 120.2 1060.6 432.904 1.18718 27 6-Methyl-5-hepten-2-one 甲基庚烯酮 C110930 C8H14O 126.2 991.6 336.622 1.17589 31 1-Octen-3-one 1-辛烯-3-酮 C4312996 C8H14O 126.2 980.0 327.019 1.27443 40 2-Heptanone 2-庚酮(M) C110430 C7H14O 114.2 890.5 253.292 1.25997 41 2-Heptanone 2-庚酮(D) C110430 C7H14O 114.2 890.5 253.292 1.63271 42 Cyclohexanone 环己酮 C108941 C6H10O 98.1 894.9 256.376 1.15231 54 Acetoin 3-羟基-2-丁酮(M) C513860 C4H8O2 88.1 720.5 175.562 1.07562 55 Acetoin 3-羟基-2-丁酮(D) C513860 C4H8O2 88.1 721.5 175.947 1.33144 64 2-Butanone 2-丁酮 C78933 C4H8O 72.1 549.4 131.856 1.24588 67 2-Propanone 丙酮 C67641 C3H6O 58.1 442.9 107.812 1.11575 81 2-Hexanone 2-己酮(M) C591786 C6H12O 100.2 775.9 196.82 1.18689 82 2-Hexanone 2-己酮(D) C591786 C6H12O 100.2 775.3 196.607 1.50103 烯类 17 beta-Ocimene β-罗勒烯 C13877913 C10H16 136.2 1053.0 421.917 1.22156 20 Limonene 柠檬烯(D) C138863 C10H16 136.2 1024.0 380.245 1.30177 21 Limonene 柠檬烯(M) C138863 C10H16 136.2 1024.8 381.381 1.21726 73 alpha-Pinene α-蒎烯 C80568 C10H16 136.2 930.7 286.085 1.21822 杂环类 26 2-Pentylfuran 2-正戊基呋喃 C3777693 C9H14O 138.2 996.3 340.466 1.25593 37 2-Acetylfuran 2-乙酰基呋喃 C1192627 C6H6O2 110.1 911.4 270.115 1.11527 47 2-Methylthiophene 2-甲基噻吩 C554143 C5H6S 98.2 802.7 209.274 1.04465 58 2-Ethylfuran 2-乙基呋喃 C3208160 C6H8O 96.1 657.5 156.28 1.30748 酸类 69 Acetic acid 冰醋酸 C64197 C2H4O2 60.1 588.7 140.726 1.05139 74 3-Methylbutanoic acid 异戊酸 C503742 C5H10O2 102.1 827.0 221.45 1.21944 硫 83 Dimethyl sulfide 二甲基硫 C75183 C2H6S 62.1 468.4 113.557 0.96118 注:根据软件内置的NIST 2014气相保留指数数据库与 G.A.S.的 IMS 迁移时间数据库,可以明确匹配定性的挥发性物质共63种,包括醛类21 种、醇类13种、酯类10种、酮类9种,烯类3种、杂环类4种,酸类2种及1种硫类。 -
[1] 夏丽飞, 梁名志, 王丽, 等. 勐海晒青茶品质化学研究[J]. 中国农学通报,2012,28(16):239−244. doi: 10.11924/j.issn.1000-6850.2011-3753 [2] Zhou B, Ma C, Wu T, et al. Classification of raw Pu-erh teas with different storage time based on characteristic compounds and effect of storage environment[J]. LWT,2020,133:1−28. [3] Choi S, Kim I, Dhungana S K, et al. Effect of extraction temperature on physicochemical constituents and antioxidant potentials of Pu-erh tea[J]. Korean Journal of Food Science and Technology,2019,51(6):584−591. [4] 罗斯瀚, 陈婷, 何继燕, 等. 高压脉冲电场促进普洱生茶醇类香气的作用研究[J]. 西南农业学报,2016,29(3):683−688. [5] 官兴丽, 肖海军, 梁俊涛, 等. 云南西双版纳7个产地大树茶(晒青毛茶)品质分析[J]. 中国农学通报,2012,28(28):297−303. doi: 10.3969/j.issn.1000-6850.2012.28.053 [6] 宁井铭, 曾新生, 张正竹, 等. 云南不同地区普洱晒青毛茶品质差异性研究[J]. 安徽农业大学学报,2010,37(1):1−4. [7] 谢志英, 黄立文, 王秀华, 等. 云南大叶种茶不同品种儿茶素组分含量分析[J]. 中国农学通报,2014,19(30):146−150. [8] 郭刚军, 彭春秀, 何享, 等. 云南晒青毛茶提取物抗氧化活性研究[J]. 中国食品学报,2013,13(8):42−48. [9] 郑起帆. 基于1H-NMR的四个茶山普洱生茶代谢组学研究[D]. 广州: 广东药科大学, 2016. [10] 蔡丽, 梁名志, 夏丽飞, 等. HPLC法测定勐海县晒青毛茶儿茶素单体含量的研究[J]. 湖南农业科学,2014(1):21−23. doi: 10.3969/j.issn.1006-060X.2014.01.008 [11] 田小军, 王杰, 邓宇杰, 等. 不同贮藏时间普洱生茶的特征性香气成分分析[J]. 食品与发酵工业,2016,42(12):194−202. [12] 刘敏, 胡成芸, 陆绎玮. 普洱茶香气成分研究进展[J]. 中国茶叶加工,2013,4(2):38−41. [13] Wu Y, Lv S, Wang C, et al. Comparative analysis of volatiles difference of Yunnan sun-dried Pu-erh green tea from different tea mountains: Jingmai and Wuliang mountain by chemical fingerprint similarity combined with principal component analysis and cluster analysis[J]. Chemistry Central Journal,2016,10(1):1−11. doi: 10.1186/s13065-016-0148-1 [14] 游鸿婷. 人工光源干燥对晒青绿茶品质影响研究[D]. 杭州: 浙江大学, 2020. [15] 赵苗苗, 杨如兵, 吕才有. 基于电子鼻及GC-MS技术对临沧晒青毛茶香气成分的对比研究[J]. 中国农学通报,2018,34(2):113−122. doi: 10.11924/j.issn.1000-6850.casb17090114 [16] He W, Wen H, Fang R, et al. Application of GC-IMS in detection of food flavor substances[J]. IOP Conference Series: Earth and Environmental Science,2020,545(1):1−7. [17] Contreras M D M, Jurado C N, Arce L, et al. A robustness study of calibration models for olive oil classification: Targeted and non-targeted fingerprint approaches based on GC-IMS[J]. Food Chemistry,2019,288:315−324. doi: 10.1016/j.foodchem.2019.02.104 [18] Drees C, Vautz W, Liedtke S, et al. GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures[J]. Applied Microbiology and Biotechnology,2019,103(21):9091−9101. [19] Liu D Y, Bai L, Xi F, et al. Characterization of Jinhua ham aroma profiles in specific to aging time by gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Meat Science,2020,5(4):1−7. [20] Tian X, Li Z J, Chao Y Z, et al. Evaluation by electronic tongue and headspace-GC-IMS analyses of the flavor compounds in dry-cured pork with different salt content[J]. Food Research International,2020,137:1−10. [21] 陈鑫郁, 贺金娜, 陈通, 等. 气相色谱离子迁移谱联用技术在食用植物油品质检测中的应用[J]. 食品安全质量检测学报,2018,9(2):396−401. doi: 10.3969/j.issn.2095-0381.2018.02.029 [22] Liedtke S, Zampolli S, Etmi I, et al. Hyphenation of a MEMS based pre-concentrator and GC-IMS[J]. Talanta,2019,191:141−148. doi: 10.1016/j.talanta.2018.07.057 [23] 刘亚芹, 王辉, 黄建琴, 等. GC-IMS在绿茶挥发性物质定性分析中的应用[J]. 中国茶叶加工,2020(1):55−59. [24] 林若川, 邓榕, 许丽蓉. 基于GC-IMS技术的绿茶风味鉴别方法可行性的研究[J]. 广东化工,2017,44(23):19−21. doi: 10.3969/j.issn.1007-1865.2017.23.012 [25] 江津津, 谢佩桦, 任芳, 等. 基于气相离子迁移谱和顶空固相微萃取的新会柑普茶的风味分析[J]. 食品工业科技,2020,41(12):214−220. [26] 金文刚, 陈小华, 耿敬章, 等. 基于气相-离子迁移谱分析不同产地“汉中仙毫”气味指纹差异[J]. 食品与发酵工业,2020,43(5):231−237. [27] Lorene A, Mariana A V D C, You W, et al. Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities[J]. Food Research International,2020,137:31−39. [28] Enkai W, Tingting Z, Chao T, et al. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats[J]. European Journal of Nutrition,2020,59(5):1937−1950. doi: 10.1007/s00394-019-02044-y [29] 李浩, 谭英智, 陈柱涛, 等. 云南大叶种晒青毛茶提取物对产毒黄曲霉生长及产毒的影响[J]. 现代食品科技,2015,31(11):101−106. [30] 杨雪梅, 刘莹亮, 李家华, 等. 基于PCA和聚类分析方法对云南不同茶区晒青毛茶生化成分分析[J]. 食品工业科技,2020,42(3):236−240. -