• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

Protective Effect of Nostoc sphaeroids Kütz on Oxidative Stress in Hyperlipidemic Mice

LIU Yinlu YANG Litao BI Cuicui WEI Fenfen ZHANG Bo

刘银路,杨丽涛,毕萃萃,等. 葛仙米对高脂血症小鼠氧化应激的保护作用[J]. 食品工业科技,2021,42(14):320−327. doi:  10.13386/j.issn1002-0306.2020090140
引用本文: 刘银路,杨丽涛,毕萃萃,等. 葛仙米对高脂血症小鼠氧化应激的保护作用[J]. 食品工业科技,2021,42(14):320−327. doi:  10.13386/j.issn1002-0306.2020090140
LIU Yinlu, YANG Litao, BI Cuicui, et al. Protective Effect of Nostoc sphaeroids Kütz on Oxidative Stress in Hyperlipidemic Mice[J]. Science and Technology of Food Industry, 2021, 42(14): 320−327. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020090140
Citation: LIU Yinlu, YANG Litao, BI Cuicui, et al. Protective Effect of Nostoc sphaeroids Kütz on Oxidative Stress in Hyperlipidemic Mice[J]. Science and Technology of Food Industry, 2021, 42(14): 320−327. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020090140

葛仙米对高脂血症小鼠氧化应激的保护作用

doi: 10.13386/j.issn1002-0306.2020090140
详细信息
  • 中图分类号: TS201.4

Protective Effect of Nostoc sphaeroids Kütz on Oxidative Stress in Hyperlipidemic Mice

More Information
    Corresponding author: 张波(1962−),女,博士,教授,研究方向:生物活性物质的功能与毒理,Email:zhangbo_wl@buu.edu.cn
  • 摘要: 大多数与衰老相关的健康问题,如皱纹、心脏病和阿尔茨海默氏症,都是由体内过度的氧化应激引起的。高脂饮食(HFD)引起的高脂血症会导致机体脂质代谢紊乱、氧化应激等,为探究葛仙米对饮食诱导的小鼠高脂血症的保护作用,实验选用6周龄C57BL/6J雄性小鼠,先喂饲高脂饲料(HFD)4周,然后在高脂饲料中添加不同剂量的葛仙米饲喂6周。结果表明,高脂饮食可导致小鼠高脂血症和明显的血脂异常。高脂饮食中添加葛仙米可降低血清甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C),升高高密度脂蛋白胆固醇(HDL-C),能显著降低肝指数和丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)活性。2.5%和7.5%葛仙米组小鼠肝组织丙二醛(MDA)含量显著降低,总抗氧化能力(T-AOC)、肝组织超氧化物歧化酶(SOD)和谷胱甘肽(GSH)含量显著升高(P<0.05)。此外,葛仙米还能显著增加肝组织低密度脂蛋白受体、CYP7a1和LXR-α的表达(P<0.05)。综上,葛仙米对高脂饲料喂养的小鼠具有降脂作用,其机制可能与提高LDLR和CYP7a1的抗氧化活性及基因表达有关。
  • Figure  1.  Body weight and food utilization rate

    Notes: (a). Body weight during modeling; (b). Body weight during NSK intervation; (c). Food utilization rate during modeling; (d). Food utilization rate during NSK intervation ($\mathrm{F}\mathrm{o}\mathrm{o}\mathrm{d}\;\mathrm{ }\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{ }\;\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\left(\text{%}\right)=\dfrac{{\rm{Food}}\; {\rm{intake}}\; {\rm{of}}\; {\rm{mice}}\left({\rm{g}}\right)}{{\rm{Mouse}}\; {\rm{weight}}\; {\rm{gain}}\left({\rm{g}}\right)}\times 100$). Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).

    Figure  2.  Effects of NSK on lipid levels in serum

    Notes: (a).Lipid levels at week 1~4 , (b). Lipid levels at week 5~10; Values represent mean ± SEM; n=10 in each group. Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).

    Figure  3.  Effects of NSK on liver injury in mice with high-fat die

    Notes: (a). Typical liver morphological images, C: Control, M: HFD, L:NSK (2.5%), H: NSK (7.5%); (b). ALT in serum; (c). AST in serum. Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).

    Figure  4.  Effect of NSK on lipid peroxidation and antioxidants in liver

    Notes: (a).The concentration of T-AOC in liver; (b). The enzyme activity of SOD in liver; (c). The concentration of GSH in liver; (d). The concentration of MDA in liver; Values represent mean±SEM, n=10 in each group;Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).

    Figure  5.  Effect of NSK on liver mRNA expression in mice

    Notes: Bars marked with different letters represent statistically significant (P<0.05), whereas bars labeled with the same letter indicate no statistically significant difference between the groups (P>0.05).

    Table  1.   Composition of assay diets

    Ingredient (g)Control dietHFDNSK (2.5%)NSK (7.5%)
    Cornstarch465.7235.7233.2228.2
    Casein140110110110
    Dextrinized cornstarch155155155155
    Sucrose100100100100
    Soybean oil40404040
    Choline bitartrate2.52.52.52.5
    Fiber150505050
    Mineral mix235353535
    Vitamin mix310101010
    L-Cysteine1.81.81.81.8
    Lard0150150150
    Cholesterol0101010
    yolk0100100100
    NSK powder002575
    Note:1: Solka-Floc cellulose. 2: AIN-93 mineral mix. 3: AIN-93 vitamin.
    下载: 导出CSV

    Table  2.   Primer pairs used for the real-time quantitative PCR analysis

    Genbank IDGene NamePrimer Sequence (5' to 3')
    NM_007393.3β-actinGTGACGTTGACATCCGTAAAGA
    GTAACAGTCCGCCTAGAAGCAC
    NM_001252658.1LDLRATTCAGTCCCAGGCAGCGTATC
    TTCTTGATCTTGGCGGGTGTTC
    NM_001278601.1CYP7a1GGGGATTGCTGTGGTAGTGAG
    CAGGGAGTTTGTGATGAAGTGG
    NM_001177730.1LXR-αCCCACGACCCACTGATGTTC
    CACAAAGGACACGGTGAAACA
    下载: 导出CSV

    Table  3.   Effect of Nostoc sphaeroides Kütz on liver index of mice

    Doseanimalsbody weightliver weightLiver index(%)
    Control1024.73±0.88c0.86±0.27c3.45±0.94d
    HFD1028.73±1.08a1.63±0.39a5.53±1.02a
    2.5%NSK1027.05±0.86ab1.53±0.42a5.16±1.37ab
    7.5%NSK1026.26±0.61b1.25±0.34b4.66±0.96bc
    Notes: Values represent mean ± SEM; n=10 in each group. Superscript letters represent statistically significant differences (P<0.05). Instances of the same letter between groups indicate that no statistically significant difference was found (P>0.05).
    下载: 导出CSV
  • [1] Hoyt C L, Burnette J L, Auster-Gussman L. “Obesity is a disease”: Examining the self-regulatory impact of this public-health message[J]. Psychological Science, 2014, 25(4): 997−1002.
    [2] Bin-Jumah M N. Monolluma quadrangula protects against oxidative stress and modulates LDL receptor and fatty acid synthase gene expression in hypercholesterolemic rats[J]. Oxidative Medicine and Cellular Longevity,2018,2018:1−10.
    [3] Lee K S, Chun S Y, Kwon Y S, et al. Deep sea water improves hypercholesterolemia and hepatic lipid accumulation through the regulation of hepatic lipid metabolic gene expression[J]. Molecular Medicine Reports,2017,15(5):2814−2822. doi:  10.3892/mmr.2017.6317
    [4] Daveri E, Cremonini E, Mastaloudis A, et al. Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice[J]. Redox Biology,2018,18:16−24. doi:  10.1016/j.redox.2018.05.012
    [5] Xu M X, Wang M, Yang W W. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating TLR4/NF-kappaB signaling and Nrf2 pathway in high fat diet fed mice[J]. International Journal of Nanomedicine,2017,12:327−345. doi:  10.2147/IJN.S116010
    [6] Buckman L B, Hasty A H, Flaherty D K, et al. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system[J]. Brain Behavior and Immunity,2014,35:33−42. doi:  10.1016/j.bbi.2013.06.007
    [7] Agrimi J, Spalletti C, Baroni C, et al. Obese mice exposed to psychosocial stress display cardiac and hippocampal dysfunction associated with local brain-derived neurotrophic factor depletion[J]. EBioMedicine,2019,47:384−401. doi:  10.1016/j.ebiom.2019.08.042
    [8] Kuang W, Zhang X, Lan Z. Flavonoids extracted fromLinaria vulgaris protect against hyperlipidemia and hepatic steatosis induced by western-type diet in mice[J]. Archives of Pharmacal Research,2018,41(12):1190−1198. doi:  10.1007/s12272-017-0941-y
    [9] La Frano M R, Hernandez-Carretero A, Weber N, et al. Diet-induced obesity and weight loss alter bile acid concentrations and bile acid-sensitive gene expression in insulin target tissues of C57BL/6J mice[J]. Nutrition Research,2017,46:11−21. doi:  10.1016/j.nutres.2017.07.006
    [10] Miyamoto J, Igarashi M, Watanabe K, et al. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids[J]. Nature Communications,2019,10(1):4007−4015. doi:  10.1038/s41467-019-11978-0
    [11] Al-Rejaie S S, Aleisa A M, Sayed-Ahmed M M, et al. Protective effect of rutin on the antioxidant genes expression in hypercholestrolemic male Westar rat[J]. BMC Complementary and Alternative Medicine,2013,13(1):136. doi:  10.1186/1472-6882-13-136
    [12] Förstermann U. Oxidative stress in vascular disease: Causes, defense mechanisms and potential therapies[J]. Nature Clinical Practice Cardiovascular Medicine,2008,5(6):338−349. doi:  10.1038/ncpcardio1211
    [13] Alcala M, Calderon-Dominguez M, Bustos E, et al. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice[J]. Scientific Reports,2017,7(1):16082. doi:  10.1038/s41598-017-16463-6
    [14] Seifried H E, Anderson D E, Fisher E I, et al. A review of the interaction among dietary antioxidants and reactive oxygen species[J]. Journal of Nutritional Biochemistry,2007,18(9):567−579. doi:  10.1016/j.jnutbio.2006.10.007
    [15] Schulz M D, Atay C, Heringer J, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity[J]. Nature,2014,514(7523):508−512. doi:  10.1038/nature13398
    [16] Beyaz S, Mana M D, Roper J, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors[J]. Nature,2016,531(7592):53−58. doi:  10.1038/nature17173
    [17] Zalewska A, Maciejczyk M, Szulimowska J, et al. High-Fat diet affects ceramide content, disturbs mitochondrial redox balance, and induces apoptosis in the submandibular glands of mice[J]. Biomolecules,2019,9(12):877. doi:  10.3390/biom9120877
    [18] Rosas-Villegas A, Sánchez-Tapia M, Avila-Nava A, et al. Differential effect of sucrose and fructose in combination with a high fat diet on intestinal microbiota and kidney oxidative stress[J]. Nutrients,2017,9(4):393. doi:  10.3390/nu9040393
    [19] Johnson H E, King S R, Banack S A, et al. Cyanobacteria (Nostoc commune) used as a dietary item in the peruvian highlands produce the neurotoxic amino acid BMAA[J]. Journal of Ethnopharmacology,2008,118(1):159−165. doi:  10.1016/j.jep.2008.04.008
    [20] Ku C S, Kim B, Pham T X, et al. Blue-Green algae inhibit the development of atherosclerotic lesions in apolipoprotein E knockout mice[J]. Journal of Medicinal Food,2015,18(12):1299−1306. doi:  10.1089/jmf.2015.0025
    [21] Locati M, Mantovani A, Sica A. Macrophage activation and polarization as an adaptive component of innate immunity[J]. Advances in Immunology,2013,120:163−184.
    [22] Li H, Su L, Chen S, et al. Physicochemical characterization and functional analysis of the polysaccharide from the edible microalga nostoc sphaeroides[J]. Molecules,2018,23(2):508. doi:  10.3390/molecules23020508
    [23] Guo M, Ding G B, Guo S, et al. Isolation and antitumor efficacy evaluation of a polysaccharide from Nostoc commune Vauch[J]. Food & Function,2015,6(9):3035−3044.
    [24] Wei F, Liu Y, Bi C, et al. Nostoc sphaeroids Kütz powder ameliorates diet-induced hyperlipidemia in C57BL/6j mice[J]. Food & Nutrition Research,2019,63:3618.
    [25] Kang H J, Pichiah P B T, Abinaya R V, et al. Hypocholesterolemic effect of quercetin-rich onion peel extract in C57BL/6J mice fed with high cholesterol diet[J]. Food Science & Biotechnology,2016,25(3):855−860.
    [26] Yang G, Lee H E, Lee J Y. A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet[J]. Scientific Reports,2016,6(1):24399. doi:  10.1038/srep24399
    [27] Li L, Zhao Z, Xia J, et al. A long-term high-fat/high-sucrose diet promotes kidney lipid deposition and causes apoptosis and glomerular hypertrophy in bama minipigs[J]. PLoS One,2015,10(11):e142884.
    [28] Zhai X, Lin D, Zhao Y, et al. Effects of dietary fiber supplementation on fatty acid metabolism and intestinal microbiota diversity in C57BL/6J mice fed with a high-fat diet[J]. Journal of Agricultural and Food Chemistry,2018,66(48):12706−12718. doi:  10.1021/acs.jafc.8b05036
    [29] Petrov P D, García Mediavilla M V, Guzmán C, et al. A network involving gut microbiota, circulating bile acids, and hepatic metabolism genes that protects against non-alcoholic fatty liver disease[J]. Molecular Nutrition & Food Research,2019,63(20):e1900487.
    [30] Mueller K M, Hartmann K, Kaltenecker D, et al. Adipocyte glucocorticoid receptor deficiency attenuates aging-and HFD-induced obesity and impairs the Feeding-Fasting transition[J]. Diabetes,2017,66(2):272−286.
    [31] Wei F, Liu Y, Bi C, et al. Nostoc sphaeroids Kütz ameliorates hyperlipidemia and maintains the intestinal barrier and gut microbiota composition of high-fat diet mice[J]. Food ence& Nutrition,2020,8(4):2348−2359.
    [32] Ke W, Wang P, Wang X, et al. Dietary Platycodon grandiflorus attenuates hepatic insulin resistance and oxidative stress in high-fat-diet induced non-alcoholic fatty liver disease[J]. Nutrients,2020,12(2):480. doi:  10.3390/nu12020480
    [33] Zilu S, Qian H, Haibin W, et al. Effects of XIAP on high fat diet-induced hepatic steatosis: A mechanism involving NLRP3 inflammasome and oxidative stress[J]. Aging,2019,11(24):12177−12201. doi:  10.18632/aging.102559
    [34] Wang Z, Komatsu T, Ohata Y, et al. Effects of rikkunshito supplementation on resistance to oxidative stress and lifespan in mice[J]. Geriatrics & Gerontology International,2019,20(3):238−247.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-15
  • 网络出版日期:  2021-06-04
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回

    重要通知

    期待您的加入:《食品工业科技》2023年春招市场专员