Determination of Multiple Receptor Agonist Drug Residues in Pork by Pass-type SPE and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry
-
摘要: 建立了猪肉中多种受体激动剂药物残留同时检测的超高效液相色谱-串联质谱方法。样品经酶解后,以酸化乙腈为提取液,PRIME HLB通过式净化的方式,超高效液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS),电喷雾正离子模式,多反应监测采集(MRM),外标法定量。结果表明,11种受体激动剂在0.1~100 μg/L范围内线性关系良好,相关系数在0.9992~0.9999之间,检出限为0.5 μg/kg,得到的平均回收率为81.3%~117.6%,相对标准偏差RSD值在0.7%~6.5%之间。该方法过程简单,适用于猪肉中多种受体激动剂药物残留的同时检测。
-
关键词:
- 猪肉 /
- 通过式固相萃取 /
- 受体激动剂 /
- 超高效液相色谱-串联质谱法
Abstract: A method was established for the simultaneous determination of multiple receptor agonist drug residues in pork by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). After enzymatic hydrolysis, the samples were extracted by acidic acetonitrile, and cleaned up by pass-type PRIME HLB, then detected by UPLC-MS/MS in the positive mode and multiple reaction monitoring (MRM) mode, and quantified by the external standard method. Results showed that, good linear relationship were obtained for the 11 multiple receptor agonist drugs in the range of 0.1~100 μg/L, with coefficients of determination between 0.9992 and 0.9999. The limits of detection (LOD) for the method were 0.5 μg/kg, the average recoveries of all compouds were between 81.3% and 117.6%, with the relative standard deviations varying from 0.7% to 6.5%. The method was simple and would be suitable for simultaneous determination of multiple receptor agonist drug residues in pork. -
表 1 流动相梯度洗脱程序
Table 1. Condition of gradient elution
时间(min) A(%) B(%) 流速(mL/min) 0.00 95.00 5.00 0.4 1.80 70.00 30.00 0.4 2.50 30.00 70.00 0.4 3.00 10.00 90.00 0.4 5.00 10.00 90.00 0.4 5.20 95.00 5.00 0.4 7.50 95.00 5.00 0.4 表 2 11种物质质谱参数
Table 2. Chromatography-mass spectrometry parameters of eleven substances
化合物名称 母离子质荷比 碰撞电压(V) 子离子质荷比 碰撞能量(eV) 莱克多巴胺 302.2 100 164* 17 302.2 100 284 9 溴莫尼定 292.2 152 211.9* 33 292.2 152 44.1 37 赛庚啶 288.0 152 191* 37 288.0 152 96 33 克仑特罗 277.1 100 202.9* 17 277.1 100 258.9 9 替扎尼定 254.1 112 44.1* 33 254.1 112 210 33 安普乐定 245.2 154 44.2* 33 245.2 154 208.9 25 沙丁胺醇 240.2 100 148* 21 240.2 100 222 9 可乐定 230.0 152 44.1* 29 230.0 152 212.8 29 赛拉嗪 221.1 132 90* 25 221.1 132 163.9 29 西马特罗 220.0 92 201.9* 9 220.0 92 159.9 17 特布他林 226.1 92 151.9* 21 226.1 92 106.9 41 注:*定量离子。 表 3 酶解对α2型与H1型回收率的影响
Table 3. Effect of enzymatic hydrolysis on recovery of α2 and H1
化合物名称 回收率(%) 样品1 样品2 样品3 样品4 安普乐定 89.0 80.2 90.1 86.7 溴莫尼定 73.6 78.4 76.8 80.1 替扎尼定 82.2 79.4 83.3 78.4 可乐定 84.6 82.9 80.4 79.6 赛拉嗪 90.2 89.6 87.6 88.3 克伦特罗 89.6 91.2 92.5 90.7 赛庚啶 95.4 93.8 90.6 91.5 表 4 11种物质标准溶液在空白基质提取液和初始流动相中的峰面积
Table 4. Peak area of 11 substances in blank matrix extracting solution and initial mobile phase
化合物名称 空白基质提取液 初始流动相 ME(%) 莱克多巴胺 17705.11 20053.88 88.3 溴莫尼定 1863.58 3217.69 57.9 赛庚啶 13750 14972.84 91.8 克伦特罗 27028.87 30935.23 87.4 替扎尼定 13219.79 13899.8 95.1 安普乐定 7241.31 7678.38 94.3 沙丁胺醇 19672.31 48998.62 40.1 可乐定 7567.76 8726.5 86.7 赛拉嗪 11383.45 12631.64 90.1 西马特罗 80843.8 68749.25 117.6 特布他林 15022.77 35916.55 41.8 表 5 11种物质的线性范围、回归方程、相关系数和检出限
Table 5. Linear ranges, regression equation, R2 and limits of detection (LODs) of 11 substances
化合物名称 线性范围(μg/L) 回归方程 相关系数 检出限(μg/kg) 沙丁胺醇 0.1~100 y=36850.99x+11877.47 0.9999 0.5 安普乐定 0.1~100 y=6296.34x+251.75 0.9999 0.5 溴莫尼定 0.1~100 y=2600.91x+1326.03 0.9997 0.5 替扎尼定 0.1~100 y=19281.71x+3161.48 0.9998 0.5 可乐定 0.1~100 y=12103.94x−2670.20 0.9997 0.5 莱克多巴胺 0.1~100 y=10678.45x+10338.17 0.9994 0.5 赛拉嗪 0.1~100 y=12523.58x−1830.73 0.9998 0.5 克伦特罗 0.1~100 y=26359.43x+2519.20 0.9998 0.5 赛庚啶 0.1~100 y=10204.60x+7333.19 0.9992 0.5 西马特罗 0.1~100 y=49285.47x+3753.23 0.9995 0.5 特布他林 0.1~100 y=25443.57x+795.51 0.9996 0.5 表 6 11种物质的加标回收试验及精密度(n=6)
Table 6. Recovery and precision for 11 substances (n=6)
化合物名称 添加水平(μg/kg) 平均回收率(%) RSD(%) 沙丁胺醇 0.50
1.00
10.081.3
88.2
109.85.9
2.2
0.7安普乐定 0.50
1.00
10.0105.7
98.2
108.23.1
1.7
2.8溴莫尼定 0.50
1.00
10.098.9
98.5
103.26.1
4.2
3.4替扎尼定 0.50
1.00
10.099.6
97.1
109.03.7
2.0
1.2可乐定 0.50
1.00
10.098.9
96.4
109.15.4
3.6
1.1莱克多巴胺 0.50
1.00
10.0114.0
116.0
108.64.1
2.8
1.1赛拉嗪 0.50
1.00
10.085.5
93.0
107.93.2
3.0
1.8克伦特罗 0.50
1.00
10.085.5
89.4
107.85.8
6.5
1.2赛庚啶 0.50
1.00
10.0115.9
117.6
114.42.0
3.5
1.6西马特罗 0.50
1.00
10.087.3
83.1
89.44.1
6.1
6.4特布他林 0.50
1.00
10.089.3
93.1
99.43.5
4.0
2.4 -
[1] 王雷杰, 占秀安, 许梓荣, 等. 可乐定对生长猪胴体组成的影响及其作用机理探讨[J]. 浙江大学学报,2005,31(5):654−658. [2] 张婧, 李丹妮, 潘娟, 等. 液相色谱-串联质谱同时检测饲料中7种α2受体激动剂类药物[J]. 饲料研究,2018,4:76−84. [3] 侯建波, 谢文, 陈笑梅, 等. 液相色谱-串联质谱-同位素稀释法同时测定猪肉中54种药物残留[J]. 质谱学报,2012,33(1):42−54. [4] Sillence M N. Technologies for the control of fat and lean deposition in livestock[J]. The Veterinary Journal,2004,167:242. doi: 10.1016/j.tvjl.2003.10.020 [5] 孙晓亮, 李雪莲, 曹旭敏, 等. 超高效液相色谱-串联质谱法快速测定猪尿液中30种不同种类“瘦肉精”药物残留[J]. 分析化学,2017,45(1):124−132. doi: 10.11895/j.issn.0253-3820.160530 [6] Polettinti A. Bioanalysis of β2-agonists by hyphenated chromatographic and mass spectrometric techniques[J]. Journal of Chromatography B Biomedical Sciences & Applications,1996,687(1):27−42. [7] O'Byrne P M, Mejza F. Advances in the treatment of mild asthmarecent evidence[J]. Pol Arch Inter Med,2018,128(9):545−549. doi: 10.20452/pamw.4341 [8] Zhang ZH, Yan H, Cui FY, etal. Analysis of multipleβ-Agonist and β-blocker residues in porcine muscle using improved QuEChERS method and UHPLC-LTQ orbitrap mass spectrometry[J]. Food Anal Method,2016,9(4):915−924. [9] 彭涛, 赖卫华, 张富生, 等. 20种β2-受体激动剂的性质及检测方法研究进展[J]. 食品与机械,2013,29(3):254−260. doi: 10.3969/j.issn.1003-5788.2013.03.063 [10] 张庆柱, 耿金荣. 赛庚啶的药理与临床研究进展[J]. 中级医刊,1996(3):47−49. [11] 叶妮, 孙雷, 尹晖, 等. UPLC-MS/MS法检测动物性食品中19中β受体激动剂残留[J]. 中国兽药杂志,2015,49(9):51−59. [12] 熊琳, 李维红, 高雅琴, 等. 肉制品中β受体激动剂类药物残留检测技术研究进展[J]. 食品安全质量检测学报,2015,6(2):528−533. [13] Elbert A H, Piet V Z, Aldo P, et al. The potential of restricted access media columns as applied in coupled column LC/LC-TSP/MS/MS for the high speed determination of target compounds in serum. Application to the direct trace analysis of salbutamol and clenbuterol[J]. Analytical Chemistry,1998,70:1362. [14] 中华人民共和国农业部第193号公告[J]. 养猪, 2005(5): 3. [15] 方萍, 林慧, 颜春荣, 等. 超高效液相色谱-串联质谱法同时测定猪肉中20种β-受体激动剂[J]. 食品安全质量检测学报,2016,7(4):1645−1651. [16] 中华人民共和国农业部公告第176号[Z]. 2007-09-19. [17] Fan S, Hong M, Zhao Y, et al. Simultaneous detection of residues of 25 β2-agonists and 23β-blockers in animal foods by high-performance liquid chromatography coupled with linear ion trap mass spectrometry[J]. Journal of Agricul-tural & Food Chemistry,2013,60(8):1898−1905. [18] 中国人民共和国农业部公告第1519号[J]. 饲料研究, 2011(5): 30. [19] 曲斌, 耿世伟, 陆桂萍, 等. 新型QuEChERS方法结合液相色谱串联质谱法快速测定猪肝中β受体激动剂残留[J]. 食品安全质量检测学报,2015,6(12):4747−4754. [20] 李磊, 李海畅, 高婧, 等. QuEChERS EMR-Lipid-LC/MS/MS测定8种β-受体激动剂[J]. 食品研究与开发,2016,37(9):178−182. doi: 10.3969/j.issn.1005-6521.2016.09.042 [21] Nielen M W, Lasaroms J J, Essers M L, et al. Multiresidue analysis of beta-agonists in bovine and porcine urine, feed and hair using liquid chromatography electrospray ionisation tandem mass spectrometry[J]. Anal Bioanal Chem,2008,391:199. doi: 10.1007/s00216-007-1760-7 [22] 岳韩笑, 雷雯, 杜晓宁, 等. 同位素稀释-气相色谱-串联质谱法测定猪肉中残留的4种β-受体激动剂[J]. 质谱学报,2018,39(1):61−68. doi: 10.7538/zpxb.2016.0123 [23] Wang G M, Zhao J, Peng T, et al. Matrix effects in the determination of βreceptor agonists in animal-derived foodstuffs by ultra-performance liquid chromatography tadem mass spectrometry with immunoaffinity solid-phase extraction[J]. J Sep Sci,2013,36:796−802. doi: 10.1002/jssc.201200661 [24] Suo D C, Zhao G L, Wang P L, et al. Simultaneous determination of β agonists and psychiatric drugs in feeds by LC-MS-MS[J]. J Chromatogr Sci,2014,52(7):604−608. doi: 10.1093/chromsci/bmt084 [25] GB 31660.6-2019食品安全国家标准动物性食品中5 种α2-受体激动剂残留量的测定液相色谱-串联质谱法[S]. 北京: 标准物质出版社, 2019. [26] GB/T 22286-2008动物源性食品中多种β受体激动剂残留量的测定液相色谱串联质谱法[S]. 北京: 标准物质出版社, 2008. [27] Hennion M C, Pichon V. Solid-phase extraction of polar organic pollutants from water[J]. Environmental Science & Technology,1994,28(13):576A−583A. [28] Mahindrakar A N. Chandra S. Shinde L P. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil[J]. Chemosphere,2014,94:199−202. doi: 10.1016/j.chemosphere.2013.09.006 [29] 陈清平, 韩峰, 汪洋, 等. 食源性动物组织中β-受体激动剂研究进展[J]. 食品安全质量检测学报,2019,10(2):385−393. doi: 10.3969/j.issn.2095-0381.2019.02.018 [30] Galarini R, Saluti G, Giusepponi D, et al. Multiclass determination of 27 antibiotics in honey[J]. Food Control,2015,48:12−24. doi: 10.1016/j.foodcont.2014.03.048 [31] Chung W C, Lam C H. Development of a 15-class multire-sidue method for analyzing 78 hydrophilic and hydrophobic veterinary drugs in milk, egg and meat by liquid chromatography-tandem mass spectrometry[J]. Analytical Methods,2015,7(16):6764−6776. doi: 10.1039/C5AY01317H [32] Zhang Y Q, Liu X M, Li X, et al. Rapid screening and quantification of multi-class multi-residue veterinary drugs in royal jelly by ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry[J]. Food Control,2016,60:667−676. doi: 10.1016/j.foodcont.2015.09.010 [33] Bogialli S, Ciampanella C, Curini R, et al. Development and validation of a rapid assay based on liquid cromatography-tandem mass spectrometry for determining macrolide antibiotic residues in eggs[J]. Journal of Chromatography A,2009,1216(40):6810−6815. doi: 10.1016/j.chroma.2009.08.020 -