• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

通过式固相萃取-超高效液相色谱-串联质谱法测定猪肉中多种受体激动剂药物残留

李艳明 王坤 朱富强 高会兰

李艳明,王坤,朱富强,等. 通过式固相萃取-超高效液相色谱-串联质谱法测定猪肉中多种受体激动剂药物残留[J]. 食品工业科技,2021,42(14):264−271. doi:  10.13386/j.issn1002-0306.2020090182
引用本文: 李艳明,王坤,朱富强,等. 通过式固相萃取-超高效液相色谱-串联质谱法测定猪肉中多种受体激动剂药物残留[J]. 食品工业科技,2021,42(14):264−271. doi:  10.13386/j.issn1002-0306.2020090182
LI Yanming, WANG Kun, ZHU Fuqiang, et al. Determination of Multiple Receptor Agonist Drug Residues in Pork by Pass-type SPE and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(14): 264−271. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020090182
Citation: LI Yanming, WANG Kun, ZHU Fuqiang, et al. Determination of Multiple Receptor Agonist Drug Residues in Pork by Pass-type SPE and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry [J]. Science and Technology of Food Industry, 2021, 42(14): 264−271. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020090182

通过式固相萃取-超高效液相色谱-串联质谱法测定猪肉中多种受体激动剂药物残留

doi: 10.13386/j.issn1002-0306.2020090182
详细信息
    作者简介:

    李艳明(1988−),女,硕士研究生,研究方向:食品安全,E-mail:1334876467@qq.com

  • 中图分类号: TS251.7

Determination of Multiple Receptor Agonist Drug Residues in Pork by Pass-type SPE and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry

  • 摘要: 建立了猪肉中多种受体激动剂药物残留同时检测的超高效液相色谱-串联质谱方法。样品经酶解后,以酸化乙腈为提取液,PRIME HLB通过式净化的方式,超高效液相色谱-串联质谱法(ultra performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS),电喷雾正离子模式,多反应监测采集(MRM),外标法定量。结果表明,11种受体激动剂在0.1~100 μg/L范围内线性关系良好,相关系数在0.9992~0.9999之间,检出限为0.5 μg/kg,得到的平均回收率为81.3%~117.6%,相对标准偏差RSD值在0.7%~6.5%之间。该方法过程简单,适用于猪肉中多种受体激动剂药物残留的同时检测。
  • 图  1  11种物质标准溶液的总离子流图(1.0 μg/L)

    Figure  1.  TIC chromatograms of standard solution of eleven substances (1.0 μg/L)

    注:1:西马特罗;2:赛拉嗪;3:可乐定;4:沙丁胺醇;5:安普乐定;6:替扎尼定;7:克伦特罗;8:赛庚啶;9:溴莫尼定;10:莱克多巴胺;11:特布他林。

    图  2  11种物质标准溶液的MRM图(0.5 μg/L)

    Figure  2.  MRM chromatograms of standard solution of eleven substances (0.5 μg/L)

    注:A:西马特罗;B:赛拉嗪;C:可乐定;D:沙丁胺醇;E:安普乐定;F:替扎尼定;G:克伦特罗;H:赛庚啶;I:溴莫尼定;J:莱克多巴胺;K:特布他林;谱图中响应值高的为定量离子,响应值低的为定性离子。

    图  3  不同乙腈浓度下各化合物回收率对比

    Figure  3.  Comparison of recoveries using different acetonitrile concentrations

    图  4  不同甲醇浓度比例下各化合物回收率对比

    Figure  4.  Comparison of recoveries using different Methanol concentrations

    图  5  不同甲酸浓度下各化合物回收率对比

    Figure  5.  Comparison of analyte recoveries using different concentrations of formic acid

    图  6  不同净化条件下各化合物回收率对比

    Figure  6.  Comparison of recoveries using different clean-up methods

    表  1  流动相梯度洗脱程序

    Table  1.   Condition of gradient elution

    时间(min)A(%)B(%)流速(mL/min)
    0.0095.005.000.4
    1.8070.0030.000.4
    2.5030.0070.000.4
    3.0010.0090.000.4
    5.0010.0090.000.4
    5.2095.005.000.4
    7.5095.005.000.4
    下载: 导出CSV

    表  2  11种物质质谱参数

    Table  2.   Chromatography-mass spectrometry parameters of eleven substances

    化合物名称母离子质荷比碰撞电压(V)子离子质荷比碰撞能量(eV)
    莱克多巴胺302.2100164*17
    302.21002849
    溴莫尼定292.2152211.9*33
    292.215244.137
    赛庚啶288.0152191*37
    288.01529633
    克仑特罗277.1100202.9*17
    277.1100258.99
    替扎尼定254.111244.1*33
    254.111221033
    安普乐定245.215444.2*33
    245.2154208.925
    沙丁胺醇240.2100148*21
    240.21002229
    可乐定230.015244.1*29
    230.0152212.829
    赛拉嗪221.113290*25
    221.1132163.929
    西马特罗220.092201.9*9
    220.092159.917
    特布他林226.192151.9*21
    226.192106.941
    注:*定量离子。
    下载: 导出CSV

    表  3  酶解对α2型与H1型回收率的影响

    Table  3.   Effect of enzymatic hydrolysis on recovery of α2 and H1

    化合物名称回收率(%)
    样品1样品2样品3样品4
    安普乐定89.080.290.186.7
    溴莫尼定73.678.476.880.1
    替扎尼定82.279.483.378.4
    可乐定84.682.980.479.6
    赛拉嗪90.289.687.688.3
    克伦特罗89.691.292.590.7
    赛庚啶95.493.890.691.5
    下载: 导出CSV

    表  4  11种物质标准溶液在空白基质提取液和初始流动相中的峰面积

    Table  4.   Peak area of 11 substances in blank matrix extracting solution and initial mobile phase

    化合物名称空白基质提取液初始流动相ME(%)
    莱克多巴胺17705.1120053.8888.3
    溴莫尼定1863.583217.6957.9
    赛庚啶1375014972.8491.8
    克伦特罗27028.8730935.2387.4
    替扎尼定13219.7913899.895.1
    安普乐定7241.317678.3894.3
    沙丁胺醇19672.3148998.6240.1
    可乐定7567.768726.586.7
    赛拉嗪11383.4512631.6490.1
    西马特罗80843.868749.25117.6
    特布他林15022.7735916.5541.8
    下载: 导出CSV

    表  5  11种物质的线性范围、回归方程、相关系数和检出限

    Table  5.   Linear ranges, regression equation, R2 and limits of detection (LODs) of 11 substances

    化合物名称线性范围(μg/L)回归方程相关系数检出限(μg/kg)
    沙丁胺醇0.1~100y=36850.99x+11877.470.99990.5
    安普乐定0.1~100y=6296.34x+251.750.99990.5
    溴莫尼定0.1~100y=2600.91x+1326.030.99970.5
    替扎尼定0.1~100y=19281.71x+3161.480.99980.5
    可乐定0.1~100y=12103.94x−2670.200.99970.5
    莱克多巴胺0.1~100y=10678.45x+10338.170.99940.5
    赛拉嗪0.1~100y=12523.58x−1830.730.99980.5
    克伦特罗0.1~100y=26359.43x+2519.200.99980.5
    赛庚啶0.1~100y=10204.60x+7333.190.99920.5
    西马特罗0.1~100y=49285.47x+3753.230.99950.5
    特布他林0.1~100y=25443.57x+795.510.99960.5
    下载: 导出CSV

    表  6  11种物质的加标回收试验及精密度(n=6)

    Table  6.   Recovery and precision for 11 substances (n=6)

    化合物名称添加水平(μg/kg)平均回收率(%)RSD(%)
    沙丁胺醇0.50
    1.00
    10.0
    81.3
    88.2
    109.8
    5.9
    2.2
    0.7
    安普乐定0.50
    1.00
    10.0
    105.7
    98.2
    108.2
    3.1
    1.7
    2.8
    溴莫尼定0.50
    1.00
    10.0
    98.9
    98.5
    103.2
    6.1
    4.2
    3.4
    替扎尼定0.50
    1.00
    10.0
    99.6
    97.1
    109.0
    3.7
    2.0
    1.2
    可乐定0.50
    1.00
    10.0
    98.9
    96.4
    109.1
    5.4
    3.6
    1.1
    莱克多巴胺0.50
    1.00
    10.0
    114.0
    116.0
    108.6
    4.1
    2.8
    1.1
    赛拉嗪0.50
    1.00
    10.0
    85.5
    93.0
    107.9
    3.2
    3.0
    1.8
    克伦特罗0.50
    1.00
    10.0
    85.5
    89.4
    107.8
    5.8
    6.5
    1.2
    赛庚啶0.50
    1.00
    10.0
    115.9
    117.6
    114.4
    2.0
    3.5
    1.6
    西马特罗0.50
    1.00
    10.0
    87.3
    83.1
    89.4
    4.1
    6.1
    6.4
    特布他林0.50
    1.00
    10.0
    89.3
    93.1
    99.4
    3.5
    4.0
    2.4
    下载: 导出CSV
  • [1] 王雷杰, 占秀安, 许梓荣, 等. 可乐定对生长猪胴体组成的影响及其作用机理探讨[J]. 浙江大学学报,2005,31(5):654−658.
    [2] 张婧, 李丹妮, 潘娟, 等. 液相色谱-串联质谱同时检测饲料中7种α2受体激动剂类药物[J]. 饲料研究,2018,4:76−84.
    [3] 侯建波, 谢文, 陈笑梅, 等. 液相色谱-串联质谱-同位素稀释法同时测定猪肉中54种药物残留[J]. 质谱学报,2012,33(1):42−54.
    [4] Sillence M N. Technologies for the control of fat and lean deposition in livestock[J]. The Veterinary Journal,2004,167:242. doi:  10.1016/j.tvjl.2003.10.020
    [5] 孙晓亮, 李雪莲, 曹旭敏, 等. 超高效液相色谱-串联质谱法快速测定猪尿液中30种不同种类“瘦肉精”药物残留[J]. 分析化学,2017,45(1):124−132. doi:  10.11895/j.issn.0253-3820.160530
    [6] Polettinti A. Bioanalysis of β2-agonists by hyphenated chromatographic and mass spectrometric techniques[J]. Journal of Chromatography B Biomedical Sciences & Applications,1996,687(1):27−42.
    [7] O'Byrne P M, Mejza F. Advances in the treatment of mild asthmarecent evidence[J]. Pol Arch Inter Med,2018,128(9):545−549. doi:  10.20452/pamw.4341
    [8] Zhang ZH, Yan H, Cui FY, etal. Analysis of multipleβ-Agonist and β-blocker residues in porcine muscle using improved QuEChERS method and UHPLC-LTQ orbitrap mass spectrometry[J]. Food Anal Method,2016,9(4):915−924.
    [9] 彭涛, 赖卫华, 张富生, 等. 20种β2-受体激动剂的性质及检测方法研究进展[J]. 食品与机械,2013,29(3):254−260. doi:  10.3969/j.issn.1003-5788.2013.03.063
    [10] 张庆柱, 耿金荣. 赛庚啶的药理与临床研究进展[J]. 中级医刊,1996(3):47−49.
    [11] 叶妮, 孙雷, 尹晖, 等. UPLC-MS/MS法检测动物性食品中19中β受体激动剂残留[J]. 中国兽药杂志,2015,49(9):51−59.
    [12] 熊琳, 李维红, 高雅琴, 等. 肉制品中β受体激动剂类药物残留检测技术研究进展[J]. 食品安全质量检测学报,2015,6(2):528−533.
    [13] Elbert A H, Piet V Z, Aldo P, et al. The potential of restricted access media columns as applied in coupled column LC/LC-TSP/MS/MS for the high speed determination of target compounds in serum. Application to the direct trace analysis of salbutamol and clenbuterol[J]. Analytical Chemistry,1998,70:1362.
    [14] 中华人民共和国农业部第193号公告[J]. 养猪, 2005(5): 3.
    [15] 方萍, 林慧, 颜春荣, 等. 超高效液相色谱-串联质谱法同时测定猪肉中20种β-受体激动剂[J]. 食品安全质量检测学报,2016,7(4):1645−1651.
    [16] 中华人民共和国农业部公告第176号[Z]. 2007-09-19.
    [17] Fan S, Hong M, Zhao Y, et al. Simultaneous detection of residues of 25 β2-agonists and 23β-blockers in animal foods by high-performance liquid chromatography coupled with linear ion trap mass spectrometry[J]. Journal of Agricul-tural & Food Chemistry,2013,60(8):1898−1905.
    [18] 中国人民共和国农业部公告第1519号[J]. 饲料研究, 2011(5): 30.
    [19] 曲斌, 耿世伟, 陆桂萍, 等. 新型QuEChERS方法结合液相色谱串联质谱法快速测定猪肝中β受体激动剂残留[J]. 食品安全质量检测学报,2015,6(12):4747−4754.
    [20] 李磊, 李海畅, 高婧, 等. QuEChERS EMR-Lipid-LC/MS/MS测定8种β-受体激动剂[J]. 食品研究与开发,2016,37(9):178−182. doi:  10.3969/j.issn.1005-6521.2016.09.042
    [21] Nielen M W, Lasaroms J J, Essers M L, et al. Multiresidue analysis of beta-agonists in bovine and porcine urine, feed and hair using liquid chromatography electrospray ionisation tandem mass spectrometry[J]. Anal Bioanal Chem,2008,391:199. doi:  10.1007/s00216-007-1760-7
    [22] 岳韩笑, 雷雯, 杜晓宁, 等. 同位素稀释-气相色谱-串联质谱法测定猪肉中残留的4种β-受体激动剂[J]. 质谱学报,2018,39(1):61−68. doi:  10.7538/zpxb.2016.0123
    [23] Wang G M, Zhao J, Peng T, et al. Matrix effects in the determination of βreceptor agonists in animal-derived foodstuffs by ultra-performance liquid chromatography tadem mass spectrometry with immunoaffinity solid-phase extraction[J]. J Sep Sci,2013,36:796−802. doi:  10.1002/jssc.201200661
    [24] Suo D C, Zhao G L, Wang P L, et al. Simultaneous determination of β agonists and psychiatric drugs in feeds by LC-MS-MS[J]. J Chromatogr Sci,2014,52(7):604−608. doi:  10.1093/chromsci/bmt084
    [25] GB 31660.6-2019食品安全国家标准动物性食品中5 种α2-受体激动剂残留量的测定液相色谱-串联质谱法[S]. 北京: 标准物质出版社, 2019.
    [26] GB/T 22286-2008动物源性食品中多种β受体激动剂残留量的测定液相色谱串联质谱法[S]. 北京: 标准物质出版社, 2008.
    [27] Hennion M C, Pichon V. Solid-phase extraction of polar organic pollutants from water[J]. Environmental Science & Technology,1994,28(13):576A−583A.
    [28] Mahindrakar A N. Chandra S. Shinde L P. Comparison of solvent extraction and solid-phase extraction for the determination of polychlorinated biphenyls in transformer oil[J]. Chemosphere,2014,94:199−202. doi:  10.1016/j.chemosphere.2013.09.006
    [29] 陈清平, 韩峰, 汪洋, 等. 食源性动物组织中β-受体激动剂研究进展[J]. 食品安全质量检测学报,2019,10(2):385−393. doi:  10.3969/j.issn.2095-0381.2019.02.018
    [30] Galarini R, Saluti G, Giusepponi D, et al. Multiclass determination of 27 antibiotics in honey[J]. Food Control,2015,48:12−24. doi:  10.1016/j.foodcont.2014.03.048
    [31] Chung W C, Lam C H. Development of a 15-class multire-sidue method for analyzing 78 hydrophilic and hydrophobic veterinary drugs in milk, egg and meat by liquid chromatography-tandem mass spectrometry[J]. Analytical Methods,2015,7(16):6764−6776. doi:  10.1039/C5AY01317H
    [32] Zhang Y Q, Liu X M, Li X, et al. Rapid screening and quantification of multi-class multi-residue veterinary drugs in royal jelly by ultra performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry[J]. Food Control,2016,60:667−676. doi:  10.1016/j.foodcont.2015.09.010
    [33] Bogialli S, Ciampanella C, Curini R, et al. Development and validation of a rapid assay based on liquid cromatography-tandem mass spectrometry for determining macrolide antibiotic residues in eggs[J]. Journal of Chromatography A,2009,1216(40):6810−6815. doi:  10.1016/j.chroma.2009.08.020
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  70
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-18
  • 网络出版日期:  2021-06-03
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回

    重要通知

    期待您的加入:《食品工业科技》2023年春招市场专员