Purification Technology of Polysaccharides from Lophatherum gracile Brongn. by Macroporous Resin Adsorption and Its Effect on Athletic Endurance of Mice
-
摘要: 本文优化了大孔树脂纯化淡竹叶粗多糖的工艺条件,研究了其对小鼠运动耐力的影响。通过静态吸附-洗脱试验筛选最佳大孔树脂型号后,分别考察上样质量浓度、样液pH、上样流速与体积、洗脱液体积分数及洗脱流速对动态纯化效果的影响,同时采用负重游泳试验和相关生化指标测定,研究纯化产物对小鼠运动耐力的影响。试验结果表明,最佳纯化工艺条件为:体积为60 mL,pH5.0,质量浓度5 mg/mL的多糖提取物溶液,以2.0 mL/min流速上样至AB-8型大孔树脂后,经160 mL 80%乙醇溶液,以1.0 mL/min流速洗脱,产物的多糖纯度由16.39%提高至57.37%。与空白对照组相比,中、高剂量的淡竹叶多糖纯化产物可显著延长小鼠的运动时间 (P<0.05, P<0.01),增强体内乳酸脱氢酶的活力 (P<0.05, P<0.01),从而减少乳酸累积(P<0.05, P<0.01),降低蛋白质的分解(P<0.05, P<0.01),进而提高机体的运动耐力。Abstract: The purified technological parameters of polysaccharide extract from Lophatherum gracile Brongn was optimized, and its effect on athletic endurance was observed. The best type of macroporous resin was selected through performance comparison of static adsorption and elution experiments, then the effects of sample solution pH, sample concentration, loading speed, sample volume, volume fraction of eluent, dosage of eluent and flow rate of elution on the dynamic purification effect were analyzed. Meanwhile, purified product on the influence of athletic endurance of mice was investigated by loading swimming test and related biochemical index detection. The results showed that the optimum purification process parameters were as follows: The initial concentration of sample solution was 5 mg/mL, the sample volume was 60 mL with loading speed of 2.0 mL/min, the pH value of sample solution was 5.0, and the volume fraction of ethanol was 80%, the eluent volume was 160 mL with flow rate of 1.0 mL/min. The purity of polysaccharide in product increased from 16.39% to 57.35%. Compared with the blank control group, the purified product groups at middle and high doses significantly prolonged exhaustive swimming time (P<0.05, P<0.01), enhanced activity of lactic dehydrogenase(P<0.05, P<0.01), decreased lactic acid and urea nitrogen content (P<0.05, P<0.01) after exercise. Therefore, polysaccharide of Lophatherum gracile Brongn. could preferably improve athletic endurance in body.
-
Key words:
- Lophatherum gracile Brongn /
- polysaccharide /
- purification /
- athletic endurance /
- AB-8 macroporous resin
-
表 1 不同类型大孔树脂的吸附与解吸效果
Table 1. Adsorption and desorption performance of different types of macroporous resins
树脂型号 极性 比表面积 (m2/g) Qe (%) Dd (%) R(%) H 103 非极性 ≥ 900 86.4 51.6 44.6 D 101 非极性 ≥ 550 80.3 64.4 51.7 AB-8 弱极性 ≥ 480 83.2 89.5 74.5 HPD-300 弱极性 ≥ 800 88.2 68.6 60.5 HPD-400 中极性 ≥550 75.1 88.7 66.6 DM 301 中极性 ≥ 330 64.5 86.5 55.8 NKA-9 极性 ≥ 450 58.7 91.2 53.5 表 2 吸附动力学模型拟合参数
Table 2. The fitting parameters of adsorption kinetics models
拟合模型 拟合方程 r 一级动力学 In(Te − Tt)=3.521−0.086t 0.9642 二级动力学 t/Tt=0.0159t+0.052 0.9891 表 3 淡竹叶多糖对小鼠力竭游泳时间的影响
Table 3. The effect of polysaccharides of Lophatherum gracile Brongn. on exhaustive swimming time of mice
表 4 淡竹叶多糖对BLA和LDH的影响
Table 4. The effect of polysaccharides of Lophatherum gracile Brongn. on BLA and LDH
试验组 BLA(mmol/L) LDH(U/L) 空白对照组 9.04 ± 0.68 3679.3 ± 249.8 阳性对照组 7.16 ± 0.83** 4472.6 ± 318.5** 低剂量组 8.59 ± 0.92## 3868.9 ± 265.7 中剂量组 8.28 ± 0.77*## 3983.5 ± 319.6*## 高剂量组 7.76 ± 0.69**# 4162.4 ± 279.8**# 表 5 淡竹叶多糖对BUN的影响
Table 5. The effect of polysaccharides of Lophatherum gracile Brongn. on BUN
试验组 BUN(mmol/L) 空白对照组 10.37 ± 1.16 阳性对照组 8.03 ± 0.36** 低剂量组 9.97 ± 0.52## 中剂量组 9.39 ± 0.73*## 高剂量组 8.62 ± 0.68**# -
[1] 焦坤. 淡竹叶化学成分的分析方法研究进展[J]. 广州化工,2017,45(19):20−21. doi: 10.3969/j.issn.1001-9677.2017.19.008 [2] 刘崇万, 范业文, 刘世娟, 等. 运用正交设计及模糊综合评价法优化藿香淡竹叶饮料配方[J]. 食品工业,2017,38(6):128−131. [3] 黄赛金, 尹爱武, 龚灯, 等. 淡竹叶多糖的抗衰老作用研究[J]. 现代食品科技,2015,31(11):51−55. [4] Ai S, Fan X, Fan L, et a1. Extraction and chemical characterization of Angelica sinensis polysaccharides and its antioxidant activity[J]. Carbohydr Polym,2013,94(2):731−736. doi: 10.1016/j.carbpol.2013.02.007 [5] Xie Q, Sun Y T, Cao L L, et al. Antifatigue and antihypoxia activities of oligosaccharides and polysaccharides from Codonopsis pilosula in mice[J]. Food & Function,2020,11(7):6352−6362. [6] Zhang C J, Guo J Y, Cheng H, et al. Spatial structure and anti-fatigue of polysaccharide from Inonotus obliquus[J]. International Journal of Biological Macromolecules,2020,151:855−860. doi: 10.1016/j.ijbiomac.2020.02.147 [7] Teng Y S, Wu D. Anti-fatigue effect of green teapolyphenols (−)-epigallocatechin-3-gallate (EGCG)[J]. Pharmacogn Mag,2017,13(50):326−331. doi: 10.4103/0973-1296.204546 [8] You L, Zhao M, Regenstein J M, et al. In vitro antioxidant activity and in vivo Anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion[J]. Food Chem,2011,124(1):188−194. doi: 10.1016/j.foodchem.2010.06.007 [9] 王晋, 杜华, 王鲁石. 淡竹叶多糖的超声提取及含量测定[J]. 中成药,2004,26(12):89−90. [10] 李志洲. 淡竹叶多糖的提取及体外抗氧化性研究[J]. 中成药,2008(3):434−437. doi: 10.3969/j.issn.1001-1528.2008.03.038 [11] 王小明, 陈碧, 张鹏, 等. 甜茶叶中总黄酮大孔树脂纯化工艺及抗氧化活性研究[J]. 食品工业科技,2019,40(24):28−33. [12] 王秋阳, 赵欣锐, 王超, 等. 大孔树脂纯化红松松仁膜衣黄酮的抗氧化活性研究[J]. 食品科技,2019,44(9):223−227. [13] 张海容, 白娟, 魏增云, 等. 超声萃取-响应面法优化淡竹叶多糖提取方法研究[J]. 化学研究与应用,2013,25(3):303−310. doi: 10.3969/j.issn.1004-1656.2013.03.006 [14] 吴金松, 耿广威, 陈晓培, 等. 信阳毛尖茶末多糖的分离纯化和体外抗氧化活性研究[J]. 食品工业科技,2020,41(13):181−186. [15] 张沛, 宋志军, 邰正福. 响应面法优化大孔树脂纯化黄精总皂苷提取物工艺[J]. 食品工业,2019,40(10):136−141. [16] 刘旻昊, 齐娜, 邓红, 等. 新疆红肉苹果多酚的纯化、组成分析与抗氧化活性[J]. 食品工业科技,2019,40(12):38−44. [17] 朱晓亚. 天门冬总皂苷提取物的纯化及体内抗疲劳作用研究[J]. 食品科技,2019,44(9):263−269. [18] 王书全, 李丽. 螺旋藻多糖抗疲劳作用研究[J]. 食品工业科技,2013,34(22):328−330. [19] Tan W, Yu K Q, Liu Y Y, et al. Antifatigue activity of poly-saccharides extract from Radix Rehmanniae preparat[J]. Int J Biol Macromol,2012,50(1):59−62. doi: 10.1016/j.ijbiomac.2011.09.019 [20] Wang J, Li S S, Fan Y Y, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. J Ethnopharmacol,2010,130(2):421−423. doi: 10.1016/j.jep.2010.05.027 [21] Nie C Z P, Zhu P L, Ma S P, et al. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce[J]. Carbohydrate Polymers,2018,188:236−242. doi: 10.1016/j.carbpol.2018.02.009 [22] 陈琛, 李鑫鑫, 魏唯, 等. 大孔树脂纯化天麻多糖的工艺研究[J]. 四川大学学报(自然科学版),2018,55(5):1109−1115. [23] 陈艳, 李美凤, 孟晓, 等. 大孔树脂法纯化松茸多糖的工艺研究[J]. 食品与发酵科技,2017,53(5):54−57. [24] 刘宛玲, 肖建辉, 黄占旺, 等. 大孔树脂分离纯化麦胚黄酮研究[J]. 食品工业科技,2017,38(2):256−259. [25] Fenglai L, Wei Huan, Wang Lei, et al. Separation and purification of macranthoidin B and dipsacoside B from Flos lonicerae by HP-20 and HP-SS macroporous resin[J]. Agricultural Science & Technology,2016,17(4):765−768. [26] Ni W H, Gao T T, Wang H L, et al. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants[J]. J Ethnopharmacol,2013,150(2):529−535. doi: 10.1016/j.jep.2013.08.055 [27] Zhao X N, Liang J L, Chen H B, et al. Anti-fatigue and antioxidant activity of the polysaccharides isolated from Millettiae speciosae Champ. Leguminosae[J]. Nutrients,2015,7(10):8657−8669. doi: 10.3390/nu7105422 [28] 孙伟, 叶润, 蔡静, 等. 大孔树脂纯化桑白皮多糖的工艺研究[J]. 食品工业科技,2020,41(14):129−133. [29] 张洪坤. 大孔树脂吸附纯化茯苓多糖工艺研究[J]. 食品研究与开发,2017,38(23):67−71. doi: 10.3969/j.issn.1005-6521.2017.23.012 [30] 焦迎春, 旷慧, 吴嘉南, 等. 柴达木大肥菇多糖对小鼠的抗疲劳作用[J]. 现代食品科技,2018,34(8):24−30. -