Determination of Cadmium in Water Samples by Nano-SiO2 Preconcentration with hicELISA
-
摘要: 目的:探究纳米SiO2富集分离水样中Cd2+的条件,制备抗Cd2+单克隆抗体,建立水样中痕量Cd2+异源性间接竞争ELISA(heterologous indirect competitive ELISA,hicELISA)快速检测方法。方法:以纳米SiO2富集、EDTA-2Na竞争洗脱Cd2+,ICP法测定处理过程中的Cd2+含量。人工合成Cd-ITCBE-BSA免疫Balb/C小鼠,制备Cd2+单克隆抗体。人工合成异源性包被抗原,建立镉离子hicELISA检测方法。结果:纳米SiO2对Cd2+的吸附容量为13.3 mg/g,富集倍数可达20倍,EDTA-2Na可有效洗脱被富集的Cd2+。以Cd-ITCBE-BSA为免疫原,小鼠血清效价达到1:1.28×104;腹水效价为1:2.0×105,亲和力Ka为8.1×108 L/moL。以Hg-ITCBE-OVA包板建立的hicELISA检测限为2.9 μg/L,与Hg2+、Cu2+、Zn2+、Pb2+、Cr3+、Mo6+、Fe3+、Co2+ 无明显交叉反应。在湖水、自来水、超纯水样品中镉的加标回收率为92.47%~102.86%。结论:建立的纳米SiO2富集重金属镉-hicELISA检测方法灵敏、特异、准确,能用于水样中镉离子的检测。Abstract: Objective: Explore the conditions of preconcentration and separation of Cd2+ in water samples by nano-SiO2, prepare monoclonal antibody against Cd2+ and establish a rapid detection method of trace Cd2+ in water samples by heterologous indirect competitive ELISA (hicELISA). Methods: Cd2+ was preconcentrated by nano-SiO2 and eluted by EDTA-2Na. The content of Cd2+ was determined by ICP. Balb/C mice were immunized with Cd-ITCBE-BSA to prepare Cd2+ monoclonal antibody. The heterologous coating antigen was synthesized to establish the detection method of cadmium ion hicELISA. Results: The adsorption capacity of Nano-SiO2 for Cd2+ was 13.3 mg/g, and the enrichment multiple was 20 times. EDTA could be used as the effective eluent for the pretreatment. Using Cd-ITCBE-BSA as immunogen, the titer of serum was 1:1.28×104, The titer of mAb in ascites was 1:2.0×105 and the affinity constantwas 8.1×108 L/mol. The detection limit of hicELISA was 2.9 μg/L. There was no significant cross reaction with Hg2+, Cu2+, Zn2+, Pb2+, Cr3+, Mo6+, Fe3+, Co2+. The recoveries of cadmium in lake water, tap water and ultrapure water were 92.47%~102.86%. Conclusion: The hicELISA method was sensitive, specific and accurate, and could be used for the detection of cadmium in water samples.
-
Key words:
- nano-SiO2 /
- heavy metal /
- cadmium ion /
- hicELISA /
- heterologous detection
-
表 1 纳米SiO2对Cd2+的富集
Table 1. Enrichment of Cd2+ and by nano-SiO2
镉标准溶液(mg/L) SiO2用量(mg) A液Cd2+浓度(mg/L) B液Cd2+浓度(mg/L) 吸附容量Qe(mg/g) 5 30 0.08±0.03 98.30±0.05 3.28 10 30 0.19±0.02 197.20±0.06 6.54 20 30 0.07±0.02 406.14±0.08 13.28 表 2 包被原与抗体的最佳浓度测定
Table 2. Determination of optimum concentration of coating antigen and antibody
包被原 阳性吸收值 阴性吸收值 包被浓度
(μg/mL)抗体稀释
倍数Cd-ITCBE-OVA 1.45 0.18 1 51200 Hg-ITCBE-OVA 1.35 0.15 2 51200 Cd-DTPA-OVA 0.57 0.12 4 2000 Cd-EDTA-OVA 0.65 0.16 8 4000 表 3 hicELISA检测方法的特异性
Table 3. Specificity of hicELISA
化合物 IC50 (μg/L) 交叉反应率 Cd2+-EDTA 44.8 100 Hg2+-EDTA 574.8 7.8 Cu2+-EDTA 792.6 5.6 Zn2+-EDTA >6.4×103 <0.5 Pb2+-EDTA >6.4×103 <0.5 Cr3+-EDTA >6.4×103 <0.5 Mo6+-EDTA >6.4×103 <0.5 Fe3+-EDTA >6.4×103 <0.5 Co2+-EDTA >6.4×103 <0.5 表 4 不同样品中Cd2+的添加回收试验
Table 4. Recovery test of Cd2+ in different samples
样品 加标浓度
(μg/L)回收浓度
(μg/L)回收率
(%)相对标准差RSD
(%)湖水 10.00 9.67±0.32 96.70±3.20 2.93 30.00 29.89±2.03 99.63±6.80 2.91 50.00 51.43±5.15 102.86±10.30 3.41 自来水 10.00 9.64±0.36 96.40±3.60 2.51 30.00 27.74±1.58 92.47±5.30 3.25 50.00 47.67±3.90 95.34±7.80 2.08 纯水 10.00 9.98±0.51 99.80±5.10 0.94 30.00 29.54±1.52 98.47±5.10 0.91 50.00 50.03±3.28 100.06±6.50 1.21 -
[1] Mudgal V, Madaan N, Mudgal A, et al. Effect of toxic metals on human health[J]. Open Nutraceuticals Journal,2010,3(1):94−99. [2] Shi T, Zhang Y, Gong Y, et al. Status of cadmium accumulation in agricultural soils across China (1975-2016): From temporal and spatial variations to risk assessment[J]. Chemosphere,2019,230:136−143. doi: 10.1016/j.chemosphere.2019.04.208 [3] Rehman K, Fatima F, Waheed I, et al. Prevalence of exposure of heavy metals and their impact on health consequences[J]. Journal of cellular biochemistry,2018,119(1):157−184. doi: 10.1002/jcb.26234 [4] Fu Z, Xi S. The effects of heavy metals on human metabolism[J]. Toxicology Mechanisms and Methods,2020,30(3):167−176. doi: 10.1080/15376516.2019.1701594 [5] Borahan T, Unutkan T, Turan N B, et al. Determination of lead in milk samples using vortex assisted deep eutectic solvent based liquid phase microextraction-slotted quartz tube-flame atomic absorption spectrometry system[J]. Food Chemistry,2019,299:125065. doi: 10.1016/j.foodchem.2019.125065 [6] King T, Sheridan R. Determination of 27 elements in animal feed by inductively coupled plasma-mass spectrometry[J]. Journal of AOAC International,2019,102(2):434−444. doi: 10.5740/jaoacint.18-0198 [7] 严峰, 杨路瑶, 汪伦. 基于电感耦合等离子质谱检测对虾中重金属及其健康风险评价[J]. 食品工业科技,2019,40(12):254−258, 264. [8] Kato T, Nagashima Y, Manaka A, et al. Rapid determination of sub-ppm heavy metals in the solution state via portable X-ray fluorescence spectrometry based on homogeneous liquid-liquid extraction in a ternary component system[J]. Analytical sciences: the international journal of the Japan Society for Analytical Chemistry,2019,35(8):939−942. doi: 10.2116/analsci.19N001 [9] Baban K B, Tejinder K, Ritula T, et al. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms[J]. Biosensors and Bioelectronics,2017,94:443−455. doi: 10.1016/j.bios.2017.03.031 [10] Li S, Zhang C, Wang S, et al. Electrochemical microfluidics techniques for heavy metal ion detection[J]. The Analyst,2018,143(18):4230−4246. doi: 10.1039/C8AN01067F [11] 刘艳梅, 钟辉, 向军俭. 重金属免疫学快速检测技术研究进展[J]. 食品科学,2014,35(17):306−311. doi: 10.7506/spkx1002-6630-201417058 [12] Jones R M, Yu H, Delehanty J B, et al. Monoclonal antibodies that recognize minimal differences in the three-dimensional structures ofmetal-chelate complexes[J]. Bioconjugate Chemistry,2002,13(3):408. doi: 10.1021/bc0155418 [13] 刘斌, 唐勇, 向军俭, 等. 纳米钛富集水样重金属镉-胶体金免疫层析法快速检测方法的建立[J]. 分析测试学报,2010,29(3):247−251. [14] 梁达豪. 功能化SiO2吸附重金属的定量分析和机理探究[D]. 南昌: 南昌航空大学, 2019. [15] 张海棠, 姜金庆, 王顺来, 等. Cd2+人工抗原的制备及其抗体特性[J]. 西北农业学报,2011,20(6):43−47. doi: 10.3969/j.issn.1004-1389.2011.06.009 [16] Zhu X, Miao X, Qin X, et al. Design of immunogens: The effect of bifunctional chelator on immunological response to chelated copper[J]. Journal of Pharmaceutical and Biomedical analysis,2019,174:263−269. doi: 10.1016/j.jpba.2019.06.001 [17] 王亚楠, 王淑云, 张海棠, 等. 抗重金属Cd2+单克隆抗体杂交瘤细胞株的建立及其免疫学特性鉴定[J]. 西北农业学报,2014,23(11):24−29. doi: 10.7606/j.issn.1004-1389.2014.11.005 [18] Beatty J D, Beatty B G, Vlahos W G. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay[J]. Journal of Immunological Methods,1987,100(1-2):173−179. doi: 10.1016/0022-1759(87)90187-6 [19] 王亚楠, 王晓斐, 张雅凌, 等. 食品总铬质量浓度icELISA试剂盒的研制及初步应用[J]. 西北农业学报,2017,26(12):1868−1876. doi: 10.7606/j.issn.1004-1389.2017.12.017 [20] 周静清, 冯锋, 邓安平, 等. 镉离子单克隆抗体的制备及其间接竞争酶联免疫分析方法的建立[J]. 化学研究与应用,2016,2016(4):432−436. doi: 10.3969/j.issn.1004-1656.2016.04.002 [21] Sarma G K, Sen Gupta S, Bhattacharyya K G. Nanomaterials as versatile adsorbents for heavy metal ions in water: A review[J]. Environ Sci Pollut Res Int. 2019, 26(7): 6245-6278. [22] 施海燕, 朱国念, 郑尊涛, 等. 同源与异源分析对ELISA检测灵敏度和特异性的影响[J]. 农药学学报,2005,2005(4):349−352. doi: 10.3321/j.issn:1008-7303.2005.04.011 [23] Chen Z J, Liu X X, Xiao Z L, et al. Production of a specific monoclonal antibody for 1-naphthol based on novel hapten strategy and development of an easy-to-use ELISA in urine samples[J]. Ecotoxicology and Environmental Safety,2020,196:110533. doi: 10.1016/j.ecoenv.2020.110533 [24] 刘伟怡, 刘凤银, 江海超, 等. 青霉素类抗生素广谱性酶联免疫分析方法的建立[J]. 生物化工,2019,5(1):52−55. [25] 姜金庆, 张海棠, 王自良, 等. 19-去甲睾酮异源性ciELISA试剂盒的研制及应用[J]. 中国生物工程杂志,2010,30(9):68−74. [26] 张海棠, 王晓斐, 职爱民, 等. B族黄曲霉毒素抗原合成设计及特异性, 广谱性抗体制备与特性分析[J]. 核农学报,2019,33(12):2414−2420. doi: 10.11869/j.issn.100-8551.2019.12.2414 [27] Wang Y N, Jiang J Q, Hanna F, et al. Advances in antibody preparation techniques for immunoassays of total aflatoxin in food[J]. Molecules (Basel, Switzerland),2020,25(18):E4113. doi: 10.3390/molecules25184113 [28] 秦宝亮. 抗重金属Hg2+单抗制备及ELISA检测方法的建立[D]. 新乡: 河南科技学院, 2016. [29] 张云显, 刘发央, 杨慧, 等. 重金属镉螯合物人工抗原的合成与鉴定[J]. 安徽农业科学,2009,37(14):6319−6321. doi: 10.3969/j.issn.0517-6611.2009.14.007 [30] 刘丹, 赵丽, 刘荣堂, 等. 重金属锌螯合物人工抗原的合成与鉴定[J]. 安徽农业科学,2009,37(8):3369−3371. doi: 10.3969/j.issn.0517-6611.2009.08.012 [31] 郭建军, 桑丽雅, 王振国, 等. 基于双功能螯合剂NOTA的重金属铜人工抗原的合成与鉴定[J]. 核农学报,2018,32(10):146−152. [32] Zhao H, Nan T, Tan G, et al. Development of two highly sensitive immunoassays for detection of copper ions and a suite of relevant immunochemicals[J]. Analytica Chimica Acta,2011,702(1):102−108. doi: 10.1016/j.aca.2011.06.027 -