不同微囊化方法包埋双歧杆菌菌粉特性分析

姜甜 陆文伟 崔树茂 张灏 赵建新

姜甜,陆文伟,崔树茂,等. 不同微囊化方法包埋双歧杆菌菌粉特性分析[J]. 食品工业科技,xxxx,x(x):1−7. doi:  10.13386/j.issn1002-0306.2020100241
引用本文: 姜甜,陆文伟,崔树茂,等. 不同微囊化方法包埋双歧杆菌菌粉特性分析[J]. 食品工业科技,xxxx,x(x):1−7. doi:  10.13386/j.issn1002-0306.2020100241
JIANG Tian, LU Wenwei, CUI Shumao, et al. Characteristic Analysis of Different Microencapsulated Bifidobacterium [J]. Science and Technology of Food Industry, xxxx, x(x): 1−7. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020100241
Citation: JIANG Tian, LU Wenwei, CUI Shumao, et al. Characteristic Analysis of Different Microencapsulated Bifidobacterium [J]. Science and Technology of Food Industry, xxxx, x(x): 1−7. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020100241

不同微囊化方法包埋双歧杆菌菌粉特性分析

doi: 10.13386/j.issn1002-0306.2020100241
基金项目: 国家食品科学与工程一流学科建设项目(JUFSTR20180102)
详细信息
    作者简介:

    姜甜(1986−),男,博士研究生,研究方向:食品微生物,E-mail:jiangtian415@163.com

    通讯作者:

    赵建新(1971−),男,博士,教授,研究方向:食品微生物,E-mail:zhaojianxin@jiangnan.edu.cn

  • 中图分类号: TS201.3

Characteristic Analysis of Different Microencapsulated Bifidobacterium

  • 摘要: 为分析不同微囊化双歧杆菌菌粉在模拟消化道环境的特性,采用静电喷雾微囊化、常规喷雾微囊化和乳化冷冻微囊化方法包埋不同双歧杆菌菌粉,并研究它们通过模拟消化道仿生系统后的存活率、疏水性、自沉淀率、粘附性和细胞脂磷壁酸中脂肪酸含量。它们的体外模拟消化实验结果表明,静电喷雾微囊化双歧杆菌的存活率高于常规喷雾微囊化和乳化冷冻微囊化,静电喷雾微囊化乳双歧杆菌BL03在经过胃液、十二指肠、回肠后的存活率高达55.01%±4.12%。经过模拟消化道后的不同微囊化双歧杆菌,除长双歧杆菌BLL2外,静电喷雾微囊化双歧杆菌疏水性比乳化冷冻微囊化双歧杆菌提高125.14%~368.75%;静电喷雾微囊化双歧杆菌自沉淀率比乳化冷冻微囊化双歧杆菌提高112.50%~372.72%;除长双歧杆菌BLL2外,静电喷雾微囊化双歧杆菌粘附性比乳化冷冻微囊化双歧杆菌提高109.52%~411.11%,静电喷雾微囊化和常规喷雾微囊化方法明显优于乳化冷冻微囊化,静电喷雾干燥乳双歧杆菌BL03的粘附数高达46.18±2.82CFU/cell,静电喷雾微囊化乳双歧杆菌BL03包埋率高达93.31%±3.16%。不同微囊化菌株通过模拟消化道后,静电喷雾和常规喷雾微囊化双歧杆菌的C12:0和C6:0脂肪酸含量高于乳化冷冻微囊化,而C18:1n9c不饱和脂肪酸含量低于乳化冷冻微囊化。综合所述,在模拟消化道仿生系统环境胁迫下,静电喷雾干燥是良好的微囊化双歧杆菌方法。
  • 图  1  不同微囊化双歧杆菌的包埋率

    Figure  1.  Embedding rates of different microencapsulated Bifidobacterium

    图  2  不同微囊化方法双歧杆菌通过模拟胃液存活率

    Figure  2.  Survival rates of different microencapsulated Bifidobacterium in simulated gastric fluid

    图  3  不同微囊化方法双歧杆菌通过模拟十二指肠存活率

    Figure  3.  Survival rates of different microencapsulated Bifidobacterium in simulated duodenum fluid

    图  4  不同微囊化方法双歧杆菌通过模拟回肠存活率

    Figure  4.  Survival rates of different microencapsulated Bifidobacteriumin simulated ileum fluid

    图  5  不同微囊化方法双歧杆菌疏水率

    Figure  5.  Hydrophobic property of different microencapsulated Bifidobacterium

    图  6  不同微囊化方法双歧杆菌自沉淀率

    Figure  6.  Deposition rate of different microencapsulated Bifidobacterium

    图  7  不同微囊化方法双歧杆菌菌体粘附数

    Figure  7.  Adhesion number of different microencapsulated Bifidobacterium

    表  1  不同微囊化双歧杆菌细胞壁脂磷壁酸中脂肪酸含量

    Table  1.   The fat acid content of lipoteichoic acid of different microencapsulated Bifidobacterium

    双歧杆菌浓度(%)C4:0C6:0C8:0C12:0C16:0C18:1n9c
    乳双歧杆菌BAL005静电喷雾干燥1.221.631.123.140.720.96
    常规喷雾干燥1.321.401.123.020.741.07
    乳化冷冻干燥0.630.790.912.050.521.28
    乳双歧杆菌BL03静电喷雾干燥1.022.0201.493.030.941.030
    常规喷雾干燥1.031.311.352.650.831.46
    乳化冷冻干燥0.630.981.451.830.941.92
    长双歧杆菌BLL2静电喷雾干燥1.741.721.123.560.740.73
    常规喷雾干燥1.031.421.263.410.870.90
    乳化冷冻干燥1.051.470.942.960.830.90
    两歧双歧杆菌BB30静电喷雾干燥1.021.921.162.730.231.28
    常规喷雾干燥1.131.341.442.160.201.69
    乳化冷冻干燥0.901.211.271.810.231.34
    婴儿双歧杆菌BI20静电喷雾干燥02.051.653.220.920.73
    常规喷雾干燥01.861.942.650.731.38
    乳化冷冻干燥01.711.602.210.701.49
    下载: 导出CSV
  • [1] Landete J M, Gaya P, Rodriauez E, et al. Probiotic bacteria for healthier aging: Immunomodulation and metabolism of phytoestrogens[J]. BioMed Research International,2017,209(17):93−98.
    [2] Short S P, Pilat J M, Williams C S. Roles for selenium and selenoprotein P in the development, procession, and prevention of intestinal disease[J]. Free Radical Biology and Medicine,2018,127:26−35. doi:  10.1016/j.freeradbiomed.2018.05.066
    [3] Cailard R, Lapointe N. In vitro gastric survival of commercially available probiotic strains and oral dosage forms[J]. International Journal of Pharmaceutics,2017,519(1-2):125−127. doi:  10.1016/j.ijpharm.2017.01.019
    [4] 孙玉章, 崔栩, 马丰英, 等. 益生菌微囊化技术研究进展[J]. 动物医学进展,2018,39(7):86−89. doi:  10.3969/j.issn.1007-5038.2018.07.019
    [5] 李康宁, 邢会霞, 焦志军, 等. 双歧杆菌NQ150双层微胶囊制备及其特性研究[J]. 中国微生态学杂志,2016,28(11):1246−1248.
    [6] ChenL, YangT, SongY, etal. Effect of xanthan-chitosan-xanthan double layer encapsulation on survival of Bifidobacterium BB01 in simulated gastrointestinal conditions, bile salt solution and yogurt[J]. LWT-Food Science and Technology,2017,81:274−280. doi:  10.1016/j.lwt.2017.04.005
    [7] Verruck S, Carvalho M W D, Liz G R D, et al. Survival of Bifidobacterium BB-12 microencapsulated with full-fat goat5s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments[J]. Small Ruminant Research,2017,153:48−56. doi:  10.1016/j.smallrumres.2017.05.008
    [8] Fayed B, Abood A, El-Sayed H S, et al. A symbiotic multi-particulate microcapsule for enhancing inulin intestinal release and Bifidobacterium gastro-intestinal survivability[J]. Carbohydrate Polymers,2018,193:137−143. doi:  10.1016/j.carbpol.2018.03.068
    [9] Eratte D, Dowling K, Barrow C J, et al. In vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabiccomplex coacervates[J]. FoodChem,2017,227:129−136.
    [10] Arena M P, Capozzi V, Spano G, et al. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms[J]. J ApplMicrobiol,2017,101(7):2641−2657.
    [11] Bentley-Hewitt K L, Narbad A, Majsak-Newman G, et al. Lactobacilli survival and adhesion to colonic epithelial cell lines is dependent on long chain fatty acid exposure[J]. European Journal of Lipid Science and Technology,2017:17−62.
    [12] Ferrando V F V, Quiberoni A Q A, Reinheiiec J R J, et al. Functional properties of Lactobacillus plantarum strains: A study in vitro of heat stress influence[J]. Food Microbiology,2016:154−161.
    [13] RenD, LiC, QinY, etal. Inhibition of Staphylococcus aureus adherence to Caco-2 cells by lactobacilli and cell surface properties that influence attachment[J]. Anaerobe,2012,18(5):508−515. doi:  10.1016/j.anaerobe.2012.08.001
    [14] Valeriano V D, ParungaoB M M, Kang D K. In vitroevaluation of the mucin- adhesion ability and probiotic potential of Lactobacillus mucosae LM1[J]. J ApplMicrobiol,2014,117(2):485−497.
    [15] 李文桂, 陈雅棠. 双歧杆菌生物学作用研究进展[J]. 地方病通报,2006,21(1):85−88. doi:  10.3969/j.issn.1000-3711.2006.01.031
    [16] BarbaraG, StanghelliniV, BrandiG, et al. Interactions between commensal bacteria and gut sensorimotor function in health and disease[J]. Am J Gastroenterol,2005,100(11):2560−2568. doi:  10.1111/j.1572-0241.2005.00230.x
    [17] Kashyap PC, Marcobal A, UrsellLK, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice[J]. Gastroenterology,2013,144(5):967−977. doi:  10.1053/j.gastro.2013.01.047
    [18] Caenepeel P, Janssens J, Vantrappen G, et al. Interdigestive myoelectric complex in germ-free rats[J]. Dig Dis Sci,1989,34(8):1180−1184.
    [19] CastellanoP, Peter I M, LongoBL, et al. Lactobacillus spp. impairthe ability of Listeria monocytogenes FBUNT to adhere to and invade Caco-2 cells[J]. Biotechnol Lett,2018,40 (8):1237−1244.
    [20] Rong J, Zheng H, Liu M, et al. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticcs NS8 from Mongolian fermented koumiss[J]. BMC Microbiol,2015,15:196−208. doi:  10.1186/s12866-015-0525-2
    [21] ColadoM C, MeifluotoJ, SalminenS. Adhesion andaggregation properties of probiotic and pathogen strains[J]. European FoodResearchandTechnology,2008,226(5):1065−1073.
    [22] Gopal P K, Prasad J, Smart J, et al. Invitroadherence properties of Lactobacillusrhamnosus DR20 and Bifidobacteriumlactis dr10 strains and the antagonistic activity again an enterotoxigenic Escherichia coli[J]. International Journal of Food Microbiology,2001,67(3):207−216. doi:  10.1016/S0168-1605(01)00440-8
    [23] Del R B, Sgorbati B, Miglioll M, et al. Adhesion, auto aggregation and hydrophobicity of 13 strains of Bifidobacterium longum[J]. Lett ApplMicrobiol,2000,31(6):438−442.
    [24] 李清, 刘小莉, 王英, 等. 植物乳杆菌表面性质及对Caco-2 细胞的黏附[J]. 食品科学,2015,36(9):97−101. doi:  10.7506/spkx1002-6630-201509018
    [25] WangY, DeletreJ, GuilotA, et a1. Influence of coling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758[J]. Cryobiology,2005,50(3):294−307.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-04-06

目录

    /

    返回文章
    返回

    重要通知

    从2020年12月23日起,若所投稿件的参考文献为中文,则需补充此中文参考文献的英文格式,特此通知。