Extraction, Purification of Taro Globulin and Its Inhibitory Activity on α-Amylase and α-Glucosidase
-
摘要: 目的:探究芋头球蛋白体外调节血糖活性。方法:以磷酸缓冲液提取芋头球蛋白,以蛋白质提取率为指标考察了料液比、温度、时间和次数对蛋白质提取的影响,在此基础上采用响应面优化提取工艺。采用DEAE-52离子纤维素柱层析法纯化粗蛋白,通过高效液相色谱法检测纯化所得球蛋白的纯度,并测定其等电点和分子量。研究了芋头球蛋白对α-淀粉酶和α-葡萄糖苷酶的抑制活性及抑制动力学,以阿卡波糖为阳性对照,评价其体外调节血糖活性。结果:最佳提取条件为:料液比1:16 g/mL、温度41 ℃、时间124 min,此时提取率为36.75%±0.31%,得率0.70%±0.04%,纯度85.72%±0.47%。纯化后的球蛋白经高效液相色谱检测得一主峰,纯度为93.27%,得率为0.20%±0.01%,等电点pI=5.6,分子量为22 kDa左右。芋头球蛋白对两种酶的抑制活性与蛋白浓度存在量效关系,对α-淀粉酶的IC50为0.75±0.10 mg/mL,对α-葡萄糖苷酶的IC50为(2.09±0.19) mg/mL,而阿卡波糖对α-淀粉酶的IC50为(0.61±0.13) mg/mL,对α-葡萄糖苷酶的IC50为(0.69±0.16) mg/mL,说明芋头球蛋白对α-淀粉酶略低于阿卡波糖,而对α-葡萄糖苷酶抑制活性远低于阿卡波糖,二者的抑制类型均为可逆性的非竞争性抑制,对α-淀粉酶抑制的Ki=(0.61±0.05) mg/mL,对α-葡萄糖苷酶抑制的Ki=(0.26±0.02) mmol/L。结论:本研究优化了芋头球蛋白的提取工艺,纯化得到芋头球蛋白,研究发现其有一定的体外调节血糖的活性,对功能食品的研发和芋头产品提高附加值具有一定的指导意义。Abstract: Objective: Exploring taro globulin regulating activity in vitro. Methods: Taro globulin was extracted by phosphate buffer. The effects of solid-liquid ratio, temperature, time and times on protein extraction were investigated with protein extraction rate as an index. Based on the test, response surface methodology was used to optimize the extraction process. The crude protein was purified by DEAE-52 ion cellulose column chromatography. The purity of purified globulin was detected by high performance liquid chromatography, and its isoelectric point and molecular weight were determined. The inhibitory activity and inhibition kinetics of taro globulin on α -amylase and α-glucosidase were studied, and acarbose was used as positive control to evaluate globulin activity of regulating blood glucose in vitro. Results: The optimum extraction conditions were as follows: The solid-to-liquid ratio was 1:16 g/mL, the temperature was 41 ℃, and the time was 124 min. Under these condition, the extraction rate was 36.75%±0.31%, the yield was 0.70%±0.04%, and the purity of the protein was 85.72%±0.47%. The purified globulin was detected by high performance liquid chromatography with a main peak with purity of 93.27%, yield of 0.20%±0.01%, isoelectric point of 5.6 and molecular weight of about 22 kDa. The taro globulin exhibited inhibition on the two enzymes with dose-effect relationship. The IC50 was (0.75±0.10) mg/mL for α-amylase and was (2.09±0.19) mg/mL for α-glucosidase The IC50 of acarbose were (0.61±0.13) mg/mL and (0.69±0.16) mg/mL. The results showed that the inhibitory activity of taro globulin on α-amylase was slightly lower than acarbose, while the inhibitory activity on α-glucosidase was much lower than acarbose. The inhibition type was reversible and uncompetitive inhibitor, with Ki=(0.61±0.05) mg/ml for α-amylase and Ki=(0.26±0.02) mmol/L/L for α-glucosidase. Conclusion: The extraction process of taro globulin was optimized, and taro globulin was purified. It was found that taro globulin has certain activity of regulating blood sugar in vitro, which would have certain guiding significance for the research and development of functional food and the increasing of added value of taro products.
-
Key words:
- taro /
- globulin /
- extraction /
- purification /
- glucose regulating activity
-
表 1 响应面试验因素和水平
Table 1. Independent variables and their coded levels used in response surface methodology
因素 编码水平(Xi) −1 0 1 A 料液比(g/mL) 10 15 20 B 提取温度(℃) 30 40 50 C 提取时间(min) 90 120 150 表 2 响应面试验设计与结果
Table 2. Design and results of response urface methodology
实验号 因素 响应值 料液比(mL/g) 温度(℃) 时间(min) 蛋白质提取率(%) 1 10 30 120 31.81±0.83 2 20 30 120 34.53±1.16 3 10 50 120 32.94±0.95 4 20 50 120 34.96±0.66 5 10 40 90 30.25±0.79 6 20 40 90 33.39±0.98 7 10 40 150 32.97±0.58 8 20 40 150 34.67±0.85 9 15 30 90 33.45±1.07 10 15 50 90 35.11±0.84 11 15 30 150 35.62±0.72 12 15 50 150 36.48±0.86 13 15 40 120 36.56±0.59 14 15 40 120 36.51±0.62 15 15 40 120 36.59±0.74 16 15 40 120 36.68±0.84 17 15 40 120 36.74±0.69 表 3 回归模型方差分析表
Table 3. Analysis of variance of regression model
来源 平方和 自由度 均方 F值 P值 显著性 模型 59.99229 9 6.66581 262.9955 < 0.0001 ** A-料液比 11.47205 1 11.47205 452.6229 < 0.0001 ** B-提取温度 2.0808 1 2.0808 82.09672 < 0.0001 ** C-提取时间 7.10645 1 7.10645 280.3807 < 0.0001 ** AB 0.1225 1 0.1225 4.833164 0.0639 AC 0.5184 1 0.5184 20.45316 0.0027 ** BC 0.16 1 0.16 6.312704 0.0402 * A2 30.70611 1 30.70611 1211.491 < 0.0001 ** B2 0.532127 1 0.532127 20.99477 0.0025 ** C2 5.053138 1 5.053138 199.3685 < 0.0001 ** 残差 0.17742 7 0.025346 失拟项 0.1429 3 0.047633 5.519506 0.0662 净误差 0.03452 4 0.00863 总离差 60.16971 16 注: *:差异显著(P<0.05),**:差异极显著(P<0.01)。 表 4 DEAE-52纤维素柱层析不同盐浓度洗脱组分的蛋白质含量和酶抑制活性
Table 4. Protein content and enzyme inhibitory activity of elution components with different salt concentrations on DEAE-52 cellulose column chromatography
NaCl浓度
(mol/L)蛋白质含量
(mg)1.0mg/mL蛋白质
对α-淀粉酶的
抑制率(%)1.0mg/mL蛋白质
对α-葡萄糖苷酶
的抑制率(%)0 13.84±0.15 7.62±0.16 5.32±0.38 0.1 65.58±0.41 58.62±0.45 35.92±0.87 0.2 53.24±0.47 12.32±0.23 9.05±0.59 0.3 15.24±0.28 8.43±0.26 5.86±0.27 0.4 3.49±0.52 4.72±0.45 2.12±0.33 表 5 芋头蛋白提取率和纯度
Table 5. Extraction rate and purity of taro protein
样品 蛋白质提取率(%) 蛋白质得率(%) 蛋白质纯度(%) 粗蛋白 36.75±0.31a 0.70±0.04a 85.72±0.47a 球蛋白 10.47±0.07b 0.20±0.01b 93.27±0.29b 注:同列不同字母代表差异显著(P<0.05)。 表 6 芋头球蛋白与α-淀粉酶和α-葡萄糖苷酶反应的Lineweaver-Burk双倒数曲线方程
Table 6. Lineweaver-Burk plots equation of the reactions of α-amylase and α-glucosidase with taro globulin
球蛋白浓度(mg/mL) α-淀粉酶反应的双倒数曲线方程 α-葡萄糖苷酶反应的双倒数曲线方程 0 y=25.385x+11.77,R2=0.997 y=23.689x+12.706,R2=0.9934 1.0 y=59.583x+30.255,R2=0.9974 y=33.67x+18.526,R2=0.9948 2.0 y=119.7x+62.758,R2=0.996 y=39.143x+22.322,R2=0.9967 -
[1] 童晶晶, 赖富饶, 吴晖, 等. 加工因素对张溪香芋全粉品质影响[J]. 粮食与油脂,2014,27(8):20−24. doi: 10.3969/j.issn.1008-9578.2014.08.006 [2] Pereira P R, Silva J T, Verícimo M A, et al. Crude extract from taro (Colocasia esculenta) as a natural source of bioactive proteins able to stimulate haematopoietic cells in two murine models[J]. Journal of Functional Foods,2015,18:333−343. doi: 10.1016/j.jff.2015.07.014 [3] Wu C, Lin K. The Antioxidative Characteristics of taro and sweet potato protein hydrolysates and their inhibitory capability on angiotensin converting enzyme[J]. Food Science and Technology Research,2017,23(6):845−853. doi: 10.3136/fstr.23.845 [4] Pereira P R, Corrêa A C N T, Vericimo M A, et al. Tarin, a potential immunomodulator and cox-inhibitor lectin found in taro (Colocasia esculenta)[J]. Comprehensive Reviews in Food Science and Food Safety,2018,17(4):878−891. doi: 10.1111/1541-4337.12358 [5] Yu J, Liu P, Duan J, et al. Itches-stimulating compounds from Colocasia esculenta (taro): Bioactive-guided screening and LC-MS/MS identification[J]. Bioorganic & Medicinal Chemistry Letters,2015,25(20):4382−4386. [6] Ribeiro P P, Mere D A E, Afonso V M, et al. Purification and characterization of the lectin from taro (Colocasia esculenta) and its effect on mouse splenocyte proliferation in vitro and in vivo[J]. The Protein Journal, 2014, 33(1): 92-99. [7] 童晶晶, 张晓元, 赖富饶, 等. 不同溶剂对香芋蛋白提取及活性的影响[J]. 现代食品科技,2016,32(1):194−202. [8] 黄友如, 王教飞, 李昕蓓, 等. 芋艿分离蛋白的制备及工艺条件优化[J]. 常熟理工学院学报,2017,31(2):97−103. doi: 10.3969/j.issn.1008-2794.2017.02.021 [9] 罗丽平, 李冰晶, 赵景芳, 等. 三种食用菌提取物体外抗氧化与降血糖活性研究[J]. 食品工业科技,2020,41(20):324−329. [10] 李波, 包怡红, 高锋, 等. 红松松球鳞片多酚对α-淀粉酶和α-葡萄糖苷酶的抑制作用[J]. 食品工业科技,2015,36(1):63−65. [11] Kumari B, Sharma P, Nath A K. α-Amylase inhibitor in local Himalyan collections of Colocasia: Isolation, purification, characterization and selectivity towards α-amylases from various sources[J]. Pesticide Biochemistry and Physiology,2012,103(1):49−55. doi: 10.1016/j.pestbp.2012.03.003 [12] Tiengburanatam N, Boonmee A, Sangvanich P, et al. A novel alpha-glucosidase inhibitor protein from the rhizomes of Zingiber ottensii Valeton[J]. Appl Biochem Biotechnol,2010,162(7):1938−1951. doi: 10.1007/s12010-010-8971-7 [13] Mcewan R , Madivha R P , Djarova T , et al. Alpha-amylase inhibitor of amadumbe (Colocasia esculenta): Isolation, purification and selectivity toward alpha-amylases from various sources[J]. African Journal of Biochemistry Research,2010,4(9):220−224. [14] Sharma K K, Pattabiraman T N. Natural plant enzyme inhibitors. Isolation and characterisation of two α-amylase inhibitors from Colocasia antiquorum tubers[J]. Journal of the Science of Food and Agriculture,1980,31(10):981−991. doi: 10.1002/jsfa.2740311003 [15] 童晶晶. 香芋蛋白的提取及其胰蛋白酶抑制剂的研究[D]. 广州: 华南理工大学, 2016. [16] 杨静华. 考马斯亮蓝法测定苦荞麦中可溶性蛋白的含量[J]. 山西医药杂志,2018,47(2):206−207. doi: 10.3969/j.issn.0253-9926.2018.02.035 [17] 石玮婷, 李荣, 姜子涛. 紫苏籽蛋白的提取及纯化研究[J]. 中国食品添加剂,2013(4):68−74. doi: 10.3969/j.issn.1006-2513.2013.04.003 [18] 黄文. 白果活性蛋白的分离、纯化、结构及其生物活性研究[D]. 武汉: 华中农业大学, 2002. [19] 阙淼琳, 蒋玉蓉, 曹美丽, 等. 响应面试验优化藜麦种子多酚提取工艺及其品种差异[J]. 食品科学,2016,37(4):7−12. doi: 10.7506/spkx1002-6630-201604002 [20] 周晓薇, 王静, 段浩, 等. 铁棍山药蛋白质的分离纯化及体外抗氧化活性[J]. 食品科学,2011,32(9):31−35. [21] 李雨哲. 马氏珍珠贝糖蛋白提取纯化及其抗氧化活性的研究[D]. 广州: 华南理工大学, 2011. [22] 崔竹梅, 王红玲, 张占琴, 等. 鹰嘴豆籽粒清蛋白和球蛋白等电点、相对分子量的测定[J]. 干旱地区农业研究,2007(6):89−95. [23] 周仲驹等夏其昌张祥明. 蛋白质电泳技术指南[M]. 北京: 化学工业出版社, 2007: 23−30. [24] 刘睿, 潘思轶, 刘亮, 等. 高粱原花青素对α-淀粉酶活力抑制动力学的研究[J]. 食品科学,2005(9):171−174. [25] 秦樱瑞, 黄先智, 曾艺涛, 等. 干燥方法对苦瓜降糖成分含量的影响[J]. 食品科学,2015,36(15):56−61. doi: 10.7506/spkx1002-6630-201515012 [26] Wu Y, Zhou Q, Chen X, et al. Comparison and screening of bioactive phenolic compounds in different blueberry cultivars: Evaluation of anti-oxidation and α-glucosidase inhibition effect[J]. Food Research International,2017,100:312−324. doi: 10.1016/j.foodres.2017.07.004 [27] 张永军, 黄惠华. 茶多酚对胰α-淀粉酶的抑制动力学研究[J]. 食品工业,2010,31(1):7−9. [28] 马庆一, 陈丽华, 杨海延, 等. 山茱萸中α-葡萄糖苷酶抑制活性因子的筛选(Ⅰ)[J]. 食品科学,2007(1):167−170. doi: 10.3321/j.issn:1002-6630.2007.01.039 [29] 常银子, 王丽霞, 仲山民, 等. 酶法提取芋艿蛋白质工艺[J]. 食品研究与开发,2011,32(3):19−22. doi: 10.3969/j.issn.1005-6521.2011.03.006 [30] Damares C. Monte-Neshich T L R R. Characterization and spatial localization of the major globulin families of taro (Colocasia esculenta L. Schott) tubers[J]. Plant Science, 1995, 112: 149-159. [31] 伍城颖, 吴启南, 王红, 等. 芡种皮多酚提取物体外抑制α-葡萄糖苷酶和α-淀粉酶活性研究[J]. 食品工业科技,2015,36(16):91−94. -