Analysis of the Content of Components in Different Extraction Parts of Angiopteris fokiensis Hieron Leaf Extracts and Their Correlation with Antioxidant Activity
-
摘要: 以福建观音座莲叶为材料,探究其乙醇提取物不同溶剂萃取部位中总黄酮、总酚的含量及抗氧化活性,并分析其相关性。采用Al(NO3)3络合法和福林酚法分别测定提取物各萃取部位中总黄酮、总多酚的含量,以(DPPH、ABTS、普鲁士蓝)法和脂质过氧化抑制能力综合评价各部位抗氧化活性,采用Pearson法分析2种成分与抗氧化活性的相关性。结果表明,福建观音座莲叶乙酸乙酯部位中总黄酮含量(271.05±2.82 mg/g)与总酚含量(59.62±3.23 mg/g)均最高;各部位均具有较好抗氧化活性,其中乙酸乙酯部位抗氧化能力最强,呈明显量效关系。相关性分析显示,各部位抗氧化活性与其总黄酮、总多酚含量呈极显著正相关(P<0.01)。因此,福建观音座莲叶各部位均含有总酚、总黄酮成分和抗氧化活性,乙酸乙酯部位最佳,可能活性成分为酚类和黄酮类化合物。Abstract: In this study, the leaves of Angiopteris fokiensis Hieron were used as materials to explore the contents and antioxidant activities of total flavonoids and total phenols in different solvent extraction parts of its ethanol extracts, and their correlation was analyzed. The contents of total flavonoids and total polyphenols in each extraction part were determined by Al(NO3)3 complexation method and Folin-phenol method, respectively. The antioxidant activity of each part was evaluated by (DPPH, ABTS, Prussian blue) method and lipid peroxidation inhibition ability. Pearson method was used to analyze the correlation between the two components and antioxidant activity. The results showed that the contents of total flavonoids (271.05±2.82 mg/g) and total phenols (59.62±3.23 mg/g) in the ethyl acetate site of the leaves of Angiopteris fokiensis Hieron were the highest, and all parts had good antioxidant activity, among which the ethyl acetate site had the strongest antioxidant activity in a dose-dependent manner. Correlation analysis showed that the antioxidant activity of each part was significantly positively correlated with the contents of total flavonoids and total polyphenols (P<0.01). Therefore, all parts of the Angiopteris fokiensis Hieron had the contents of total flavonoids and total phenolsand and antioxidant effects, and the ethyl acetate part was the best. The active ingredient might be total flavonoids and total phenols.
-
图 1 福建观音座莲叶提取物不同萃取部位总黄酮含量
Figure 1. Content of total flavonoids in different extracted parts of Angiopteris fokiensis Hieron leaf extract
注:醇提物:YE-Z;石油醚:YE-P;乙酸乙酯:YE-E;正丁醇:YE-B;水:YE-W;图2同。
表 1 福建观音座莲叶提取物不同萃取部位对ABTS+自由基清除作用的IC50(
${\rm{\bar X}} \pm {\rm{SD}}$ ,n=3)Table 1. IC50 of the scavenging effect of different extracted parts of Angiopteris fokiensis Hieron leaf extract on ABTS free radicals (
${\rm{\bar X}} \pm {\rm{SD}}$ , n=3)样品 YE-Z YE-P YE-E YE-B YE-W VC IC50(mg/mL) 2.01±0.08 2.65±0.13 0.47±0.05 1.41±0.09 2.48±0.12 0.110±0.005 表 2 福建观音座莲叶提取物不同萃取部位对DPPH自由基清除作用的IC50(
${\rm{\bar X}} \pm {\rm{SD}}$ ,n=3)Table 2. IC50 of the scavenging effect of different extracted parts of Angiopteris fokiensis Hieron leaf extract on DPPH free radicals (
${\rm{\bar X}} \pm {\rm{SD}}$ ,n=3)样品 YE-Z YE-P YE-E YE-B YE-W VC IC50(mg/mL) 0.80±0.04 0.70±0.03 0.19±0.02 0.73±0.04 1.15±0.07 0.00037±0.00021 表 3 福建观音座莲叶提取物不同萃取部位铁还原能力的线性分析
Table 3. Linear analysis of iron reduction ability of different extracted parts of Angiopteris fokiensis Hieron leaf extract
样品 线性方程 r YE-Z Y=0.4399x+0.0037 0.9992 YE-P Y=0.2261x+0.0322 0.9850 YE-E Y=0.9007x+0.1706 0.9801 YE-B Y=0.5601x−0.0037 0.9995 YE-W Y=0.506x+0.0270 0.9999 VC Y=52.895x+0.0039 0.9998 表 4 福建观音座莲叶提取物不同萃取部位抑制脂质过氧化能力的IC50(
${\rm{\bar X}} \pm {\rm{SD}}$ ,n=3)Table 4. IC50 of different extracted parts of Angiopteris Fokiensis Hieron leaf extract to inhibit lipid peroxidation (
${\rm{\bar X}} \pm {\rm{SD}}$ , n=3)样品 YE-Z YE-P YE-E YE-B YE-W VC IC50(mg/mL) 0.52±0.08 0.38±0.04 0.26±0.02 4.90±0.27 2.69±0.35 0.0040±0.0003 表 5 抗氧化活性与成分含量的相关系数
Table 5. Correlation coefficient between antioxidant activity and component content
分析指标 总黄酮 总酚 清除ABTS+自由基能力 0.998** 0.995** 清除DPPH自由基能力 0.985** 0.977** 铁还原能力 0.981** 1.000** 抑制脂质过氧化能力 0.968** 0.968** 注:**双侧极显著相关(P<0.01),*双侧显著相关(P<0.05)。 -
[1] Mitchell J B, Xavier S, Deluca A M, et al. A low molecular weight antioxidant decreases weight and lowers tumor incidence[J]. Free Radical Biology & Medicine,2003,34(1):93−102. [2] Taubert D, Breitenbach T, Lazar A, et al. Reaction rate constants of superoxide scavenging by plant antioxidants[J]. Free Radical Biology & Medicine,2003,35(12):1599−1607. [3] Toledo P, Luis H M D, Alexander H M D, et al. Antioxidant ischemic disease[J]. Critical Care Medicine,2008,36(12):3275−3276. doi: 10.1097/CCM.0b013e31818f2781 [4] Saito M, Sakagami H, Fujisawa S. Cytotoxicity and apoptosis induction by butylated hydroxyl anisole (GRA) and butylated hydroxyl toluene (GRT)[J]. Anticancer Research,2003,23(6C):4693. [5] Mircea O, Isabel E. Antioxidants: Characterization, natural sources, extraction and analysis[J]. Food Research International,2015,74:10−36. doi: 10.1016/j.foodres.2015.04.018 [6] 罗燕燕, 刘效栓, 李喜香等. 甘草渣化学成分及其综合利用的研究[J]. 西部中医药,2017,30(3):138−141. doi: 10.3969/j.issn.1004-6852.2017.03.046 [7] 刘捷, 王文, 卢奎等. 皱皮木瓜多糖的提取及其抗氧化活性研究[J]. 河南工业大学学报(自然科学版),2011,32(1):48−52. [8] 中国植物志编辑委员会. 中国植物志, 第2版[M]. 北京: 科学出版社, 2006: 57. [9] 张赟赟, 杨海船, 李嘉等. 瑶药马蹄蕨中脂溶性成分的GC-MS分析[J]. 中国药房,2015,26(18):2544−2546. doi: 10.6039/j.issn.1001-0408.2015.18.33 [10] 文晓琼, 胡颖, 曾晓君等. 福建观音座莲的化学成分研究[J]. 时珍国医国药,2012,23(1):1−2. doi: 10.3969/j.issn.1008-0805.2012.01.001 [11] 张赟赟, 杨海船, 周萍等. 壮瑶药材马蹄蕨多糖的提取工艺及其3种单糖的含量测定方法研究[J]. 中国药房,2018(19):2667−2670. doi: 10.6039/j.issn.1001-0408.2018.19.17 [12] 余德会, 唐秀俊, 谢镇国等. 雷公山珍稀蕨类植物金毛狗和福建观音座莲资源现状及生境研究[J]. 安徽农业科学,2019,47(11):1−3, 27. doi: 10.3969/j.issn.0517-6611.2019.11.001 [13] 曾汉元. 福建观音座莲的根状茎繁殖研究[J]. 湖南中医药导报,2002(10):629−630. [14] 钱慧琴, 秦晶晶, 赵媛等. 月季不同部位总黄酮含量分析及其抗氧化活性研究[J]. 食品研究与开发,2018,39(20):19−22. doi: 10.3969/j.issn.1005-6521.2018.20.004 [15] Li X, Lin J, Han W, et al. Antioxidant ability and mechanism of Rhizoma Atractylodes macrocephala[J]. Molecules,2012,17:13457−13472. doi: 10.3390/molecules171113457 [16] 苗永美, 简兴, 汪雁等. 广东石豆兰不同溶剂提取物抗氧化及与总黄酮、总酚含量的关系[J]. 核农学报,2020,34(5):1038−1046. [17] Chavan J J, Gaikwad N B, Kshirsagar P R, et al. Totalphenolics, flavonoids and antioxidant properties of threeCeropegia species from Western Ghats of India[J]. S Afr J Bot,2013,88(5):273−277. [18] 张婉君, 冯彬, 谢笔钧等. 白肉番石榴总黄酮提取工艺优化及体外抗氧化活性分析[J]. 食品工业科技,2019,40(8):196−201. [19] Krakowska A, Rafińska K, Walczak J, et al. Medicago sativa comparison of various extraction techniques of: yield, antioxidant activity, and content of phytochemical constituents[J]. Journal of AOAC International,2017,100(6):1681−1693. doi: 10.5740/jaoacint.17-0234 [20] 张明, 帅希祥, 杜丽清等. 澳洲坚果青皮多酚提取工艺优化及其抗氧化活性[J]. 食品工业科技,2017,38(22):195−199. [21] Xie J H, Dong C J, Nie S P, et al. Extraction, chemicalcomposition and antioxidant activity of flavonoids from Cyclocarya paliurus(Batal.) Iljinskaja leaves[J]. Food Chem,2015,186(21):97−105. [22] 王敏, 田珍燕, 王蔚新. 板栗壳多酚的提取及其抗氧化性能的研究[J]. 食品研究与开发,2018,39(22):66−72. doi: 10.3969/j.issn.1005-6521.2018.22.012 [23] Yu J Q, Yin Y, Lei J C, et al. Activation of apoptosis by ethyl acetate fraction of ethanol extract of Dianthus superbus in HepG2 cell line[J]. Cancer Epidemiol,2012,36(1):e40−e45. doi: 10.1016/j.canep.2011.09.004 [24] 喻艳, 逯海朋, 贾亚楠等. 桑椹中酚类物质极性分布及抗氧化活性评价[J]. 食品与发酵工业,2017,43(1):73−79. [25] Tsuda T, Watanabe M, Ohshima K, et al. Antioxidative activity of the anthocyanin pigments cyanidin 3-O-beta-D-glucoside and cyaniding[J]. Journal of Agricultural and Food Chemistry,1994,42(11):2407−2410. doi: 10.1021/jf00047a009 [26] 赵晋彤, 付梓璇, 伊进杰等. 粗茎鳞毛蕨萃取物的体外抑菌及抗氧化活性分析[J]. 分子植物育种,2018,16(16):5437−5443. [27] 张鹤, 张莹, 杨逢建等. 向日葵茎髓醇提物中不同溶剂萃取部位总酚、总黄酮含量与抗氧化活性的相关性[J]. 食品科学,2018,39(15):54−59. doi: 10.7506/spkx1002-6630-201815008 [28] 徐乾达, 周志强, 何强等. 雪松松针乙醇提取物的抗氧化活性及构效关系研究[J]. 食品工业科技,2020,41(20):295−302. -