Difference Analysis on the Taste Characteristics of Sturgeon under Different Steaming Time
-
摘要: 通过仪器分析法对蒸制不同时间鲟鱼肉的非挥发性风味物质进行量化,包括游离氨基酸、风味核苷酸、有机酸、甜菜碱和无机离子;采用电子舌结合感官评价的方法对鲟鱼肉进行滋味分辨和味觉评价,以期为鲟鱼肉热加工过程中的质量控制提供理论参考。结果表明:在蒸制过程中,鲜味氨基酸和甜味氨基酸含量变化明显,在蒸制12 min时显著降低(P<0.05),蒸制16 min时显著升高(P<0.05);蒸制不同时间风味核苷酸含量存在差异,蒸制12~16 min时风味核苷酸总量最多,蒸制16 min时IMP+GMP的含量达到最大值;随着蒸制时间的延长,有机酸和无机离子总量在减少,其中乳酸、Na+和PO43-损失较为严重;电子舌的主成分分析(PCA)结果显示,鲟鱼肉在蒸制8 min后其滋味变化程度较小;感官评价的结果显示,蒸制16 min的鲟鱼肉具有较好的滋味和较高的整体可接受度。较长时间的蒸制并不会给鱼肉感官带来显著改善,反而会造成味感下降。因此,鲟鱼肉应在蒸制12~16 min内食用,蒸制16 min左右滋味最佳。Abstract: The non-volatile flavor substances of dorsal meat in sturgeon, including free amino acids, flavor nucleotides, organic acids, betaine and inorganic ions, were quantified by instrumental analysis. It is expected to provide theoretical reference for quality control of sturgeon meat during steaming. The results showed that the contents of umami amino acids and sweet amino acids changed significantly during the steaming, which decreased significantly at 12 min and increased significantly at 16 min(P<0.05). There were differences in the content of flavor nucleotides of dorsal meat in sturgeon at different times of steaming, and the total amount of flavoring nucleotides was the highest at 12~16 min, and the content of IMP+GMP reached the maximum at 16 min. With the extension of steaming time, the total amount of organic acids and inorganic ions decreased, among which lactic acid, Na+ and PO43− losses were more serious. The results of principal component analysis (PCA) of electronic tongue showed that the taste of sturgeon meat changed little after steaming for 8 min. The results of sensory evaluation showed that the sturgeon steamed for 16 min had better taste and higher overall acceptability. Steaming for a long time did not significantly improve the sensory perception, but decreased the taste. Therefore, the sturgeon meat should be eaten within 12~16 min of steaming, and the best taste is about 16 min of steaming.
-
Key words:
- sturgeon /
- steaming /
- nonvolatile flavor substance /
- variance analysis /
- evaluation of taste
-
表 1 感官评价标准
Table 1. Sensory evaluation criteria
评分指标 评分细则 外观(满分4分) 色泽均匀,肉质呈白色,表面富有光泽(4分);色泽较均匀,肉质粗糙稍黄,表面有光泽(3分);色泽不均匀,肉质粗糙稍黄,表面微有光泽(2分);色泽不均匀,肉质粗糙泛黄,表面光泽感差(1分) 气味(满分6分) 滋味鲜美,具有鱼肉特有香味,无异味(6分);滋味较为鲜美,具有鱼肉特有香味,无异味(5分);滋味较为鲜美,香味不足,无异味(4分);滋味鲜美不足,香味不足,无异味(3分);滋味鲜美不足,香味不足,无异味(2分);有异味(1分) 组织形态(满分4分) 形体饱满,有弹性,外形保持完好(4分);形体较为饱满,弹性较差,外形保持完好(3分);形体较为饱满,弹性较差,外形稍差(2分);形体饱满度差,无弹性,外形较差(1分) 口感(满分6分) 口感好,多汁,肉质嫩(6分);口感好,汁液较多,肉质嫩(5分);口感较好,汁液较多,肉质嫩(4分);口感较好,稍干,肉质稍有柴感(3分);口感差,稍干,肉质有柴感(2分);肉质干且柴感重(1分) 表 2 鲟鱼背部肉蒸制过程中游离氨基酸含量的变化
Table 2. Changes of free amino acid contents of dorsal meat in sturgeon during steaming
呈味物质 呈味特征 单位(mg/100 g) 4 min 8 min 12 min 16 min 20 min 天冬氨酸 鲜/甜(+) 1.28 ± 0.00c 0.74 ± 0.02b 0.20 ± 0.00a 0.73 ± 0.01b 0.45 ± 0.18b 苏氨酸 甜(+) 2.86 ± 0.00a 2.91 ± 0.01ab 3.02 ± 0.05b 2.86 ± 0.05a 2.86 ± 0.09a 丝氨酸 甜(+) 3.54 ± 0.01b 3.89 ± 0.06c 2.30 ± 0.04a 3.80 ± 0.15c 3.35 ± 0.10b 谷氨酸 鲜(+) 1.35 ± 0.03a 1.80 ± 0.55bc 1.49 ± 0.05ab 1.93 ± 0.50c 1.62 ± 0.24abc 甘氨酸 甜(+) 6.14 ± 0.01bc 5.33 ± 0.63b 3.87 ± 0.02a 5.20 ± 0.50b 6.49 ± 0.35c 丙氨酸 甜(+) 8.71 ± 0.02ab 8.73 ± 0.44ab 9.25 ± 0.04b 8.51 ± 0.25a 9.97 ± 0.32c 缬氨酸 甜/苦(+) 2.29 ± 0.07a 2.13 ± 0.27a 2.31 ± 0.04a 2.09 ± 0.15a 2.05 ± 0.17a 甲硫氨酸 苦/甜(−) 0.97 ± 0.00ab 0.85 ± 0.04a 1.12 ± 0.00c 0.87 ± 0.05ab 0.99 ± 0.17bc 异亮氨酸 苦(−) 1.65 ± 0.00a 1.52 ± 0.15a 1.72 ± 0.01a 1.50 ± 0.09a 1.47 ± 0.14a 亮氨酸 苦(−) 2.61 ± 0.01bc 2.40 ± 0.18ab 2.70 ± 0.02c 2.36 ± 0.11ab 2.33 ± 0.10a 酪氨酸 苦(−) 1.20 ± 0.01a 1.09 ± 0.13a 1.31 ± 0.00a 1.04 ± 0.13a 1.16 ± 0.20a 苯丙氨酸 苦(−) 0.77 ± 0.01a 0.68 ± 0.10a 0.95 ± 0.01b 0.67 ± 0.04a 0.71 ± 0.04a 赖氨酸 苦/甜(−) 2.15 ± 0.02a 2.44 ± 0.13ab 2.83 ± 0.07b 2.38 ± 0.28ab 2.43 ± 0.06ab 组氨酸 苦(−) 2.41 ± 0.02ab 2.34 ± 0.12ab 2.57 ± 0.05b 2.25 ± 0.17a 2.30 ± 0.04a 精氨酸 甜/苦(+) 1.08 ± 0.04a 1.16 ± 0.04a 1.35 ± 0.03b 1.14 ± 0.08a 1.20 ± 0.03a 脯氨酸 甜/苦(+) 0.46 ± 0.02a 0.45 ± 0.03a 0.48 ± 0.14a 0.40 ± 0.02a 0.51 ± 0.11a 鲜味氨基酸 2.63 ± 0.03c 2.54 ± 0.28bc 1.75 ± 0.02a 2.65 ± 0.25c 2.27 ± 0.06b 甜味氨基酸 21.25 ± 0.01bc 20.87 ± 0.68b 18.43 ± 0.1a 20.37 ± 0.24b 20.67 ± 0.17c 苦味氨基酸 15.59 ± 0.02b 15.06 ± 0.6ab 17.35 ± 0.31c 14.69 ± 0.11a 15.14 ± 0.35ab 注:每行中不同的字母表示各时间点之间存在显著性差异(P<0.05);表3、表4同。 表 3 鲟鱼背部肉蒸制过程中风味核苷酸含量的变化
Table 3. Changes of flavor nucleotides contents of dorsal meat in sturgeon during steaming
呈味物质 呈味特性 单位(mg/100 g) 4 min 8 min 12 min 16 min 20 min AMP 鲜/甜(+) 47.81 ± 1.41a 48.98 ± 0.11bc 49.32 ± 0.35b 48.55 ± 0.27c 49.41 ± 3.27c IMP 鲜(+) 81.62 ± 0.96bc 75.04 ± 1.76a 81.47 ± 0.08bc 83.18 ± 1.08c 77.65 ± 1.39ab GMP 鲜(+) 7.56 ± 0.89a 10.70 ± 1.68a 7.88 ± 2.22a 9.11 ± 3.41a 10.69 ± 2.73a 表 4 鲟鱼背部肉蒸制过程中有机酸、甜菜碱含量的变化
Table 4. Changes of organic acid and betaine contents of dorsal meat in sturgeon during steaming
呈味物质 呈味特性 单位(mg/100 g) 4 min 8 min 12 min 16 min 20 min 苹果酸 酸/苦(−) 71.47 ± 2.51b 70.15 ± 0.15ab 68.64 ± 1.20ab 67.29 ± 1.27ab 67.74 ± 2.46b 乳酸 酸/苦(−) 311.05 ± 9.30b 304.51 ± 3.06b 305.85 ± 2.35b 285.77 ± 9.54ab 277.08 ± 8.40a 琥珀酸 酸/鲜(+) 9.63 ± 0.45b 10.70 ± 0.29b 6.34 ± 0.97a 6.56 ± 0.41a 6.06 ± 0.68a 甜菜碱 鲜/甜(+) 220.22 ± 3.08a 206.40 ± 3.11a 214.12 ± 5.54a 216.80 ± 5.09a 220.90 ± 3.11a -
[1] 周晓华. 鲟鱼子酱产业现状分析[J]. 水产学杂志,2015,28(4):48−52. doi: 10.3969/j.issn.1005-3832.2015.04.011 [2] Zhu L, Yang F, Gao P, et al. Comparative study on quality characteristics of pickled and fermented sturgeon (Acipenser sinensis) meat in retort cooking[J]. International Journal of Food Science & Technology,2019,54(8):2553−2562. [3] Hung S S. Recent advances in sturgeon nutrition[J]. Animal Nutrition,2017,3(3):191−204. doi: 10.1016/j.aninu.2017.05.005 [4] 郭思亚, 蒋美龄, 张崟, 等. 腌制工艺对鲟鱼肉干质构特性的影响[J]. 食品研究与开发,2019,40(14):75−80. [5] 胡吕霖, 任思婕, 沈清, 等. 不同烹饪方式及体外模拟消化环境对鲟鱼蛋白质氧化及消化性的影响[J]. 食品科学,2018,39(20):63−70. doi: 10.7506/spkx1002-6630-201820010 [6] 孙丽, 夏文水. 蒸煮对金枪鱼肉及其蛋白质热变性的影响[J]. 食品与机械,2010,20(1):22−25. [7] 孙灵霞, 李苗云, 李闯, 等. 烹制工具及烹饪方法对鸡肉品质的影响[J]. 河南农业大学学报,2020,54(1):150−154. [8] Głuchowski A, Czarniecka-Skubina E, Wasiak-Zys G, et al. Effect of various cooking methods on technological and sensory quality of atlantic salmon (Salmo salar)[J]. Foods,2019,8(8):323−323. doi: 10.3390/foods8080323 [9] Kong F, Tang J, Lin M, et al. Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure[J]. LWT-Food Science and Technology,2008,41(7):1210−1222. doi: 10.1016/j.lwt.2007.07.020 [10] Zou Y, Kang D, Liu R, et al. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef[J]. Ultrasonics Sonochemistry,2018,46(46):36−45. [11] Ismail I, Hwang Y H, Joo S T. Low-temperature and long-time heating regimes on non-volatile compound and taste traits of beef assessed by the electronic tongue system[J]. Food Chemistry,2020,320(1):120656−120656. [12] Ayed C, Wang W, Liu Y. Sensory-guided analysis of key taste-active compounds in pufferfish (Takifugu obscurus)[J]. Journal of Agricultural and Food Chemistry,2019,67(50):13809−13816. doi: 10.1021/acs.jafc.8b06047 [13] Triki M, Herrero A M, Jiménez-Colmenero F, et al. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage[J]. Foods,2018,7(9):132−132. doi: 10.3390/foods7090132 [14] 汤水粉, 钱卓真, 罗方方, 等. 高效液相色谱法测定水产品中关联化合物[J]. 渔业科学进展,2014,35(2):110−116. doi: 10.3969/j.issn.1000-7075.2014.02.016 [15] Chen D W, Zhang M. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis)[J]. Food Chemistry,2007,104(3):1200−1205. doi: 10.1016/j.foodchem.2007.01.042 [16] 陈德慰, 苏键, 颜栋美, 等. 广西北部湾常见水产品中甜菜碱含量测定及呈味效果评价[J]. 现代食品科技,2011,27(4):468−472. [17] 彭荣艳, 程裕东, 金银哲. 油炸温度和时间对草鱼鱼片品质影响的研究[J]. 食品工业科技,2015,36(5):132−135. [18] 徐靖彤, 彭玲玲, 赵丹丹, 等. 蒸煮工艺对鲣鱼鱼柳品质的影响[J]. 食品工业科技,2016,37(11):206−211. [19] 陈红霞, 贺稚非, 王毅, 等. 蒸汽加热对伊拉兔肉及其蛋白质热变性的影响[J]. 食品工业科技,2013,34(21):65−68. [20] 张丹丹, 叶小辉, 赵峰, 等. 基于游离氨基酸组分的白茶滋味品质研究[J]. 福建农业学报,2016,31(5):515−520. doi: 10.3969/j.issn.1008-0384.2016.05.014 [21] Yang W, Shi W, Zhou S, et al. Research on the changes of water-soluble flavor substances in grass carp during steaming[J]. Journal of Food Biochemistry,2019,43(11):e12993−e12993. [22] Tsai S Y, Huang S J, Lo S H, et al. Flavour components and antioxidant properties of several cultivated mushrooms[J]. Food Chemistry,2009,113(2):578−584. doi: 10.1016/j.foodchem.2008.08.034 [23] Yang J H, Lin H C, Mau J L. Non-volatile taste components of several commercial mushrooms[J]. Food Chemistry,2001,72(4):465−471. doi: 10.1016/S0308-8146(00)00262-4 [24] Liu Y, Huang F, Yang H, et al. Effects of preservation methods on amino acids and 5′-nucleotides of Agaricus bisporus mushrooms[J]. Food Chemistry,2014,149:221−225. doi: 10.1016/j.foodchem.2013.10.142 [25] 包秀婧, 刘新宇, 辛广, 等. 变温压差膨化干燥对秀珍菇鲜香味的影响[J]. 食品科学,2019,40(22):243−248. doi: 10.7506/spkx1002-6630-20181128-324 [26] 卢忆, 杜新, 戴瑞彤. 欧姆加热与水浴加热对羊肉糜滋味物质及游离脂肪酸的影响[J]. 现代食品科技,2015,31(12):362−369, 405. [27] Yin C, Fan X, Fan Z, et al. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms[J]. Journal of the Science of Food and Agriculture,2019,99(4):1691−1699. doi: 10.1002/jsfa.9358 [28] Bremner H A , Olley J , Statham J A , et al. Nucleotide catabolism: Influence on the storage life of tropical species of fish from the North West Shelf of Australia[J]. Journal of Food Science,1988,53(1):6−11. doi: 10.1111/j.1365-2621.1988.tb10165.x [29] Zhang R, Qiu W, Zhang M, et al. Effects of different heating methods on the contents of nucleotides and related compounds in minced Pacific white shrimp and Antarctic krill[J]. LWT,2018,87(1):142−150. [30] Dashdorj D, Amna T, Hwang I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview[J]. European Food Research and Technology,2015,241(2):157−171. doi: 10.1007/s00217-015-2449-3 [31] 王士稳, 梁萌青, 林洪, 等. 海水和淡水养殖凡纳滨对虾呈味物质的比较分析[J]. 海洋水产研究,2006,27(5):79−84. [32] 池岸英, 吉宏武, 高加龙, 等. 加热方式对凡纳滨对虾滋味成分的影响[J]. 现代食品科技,2012,28(7):776−779. [33] 曾欢, 苏红, 郑锦媛, 等. 长江刀鲚呈鲜关键物质与无机离子的交互作用[J]. 食品与发酵工业,2019,45(16):90−96. [34] Gong J, Shen H, Zheng J Y, et al. Identification of key umami-related compounds in Yangtze Coilia ectenes by combining electronic tongue analysis with sensory evaluation[J]. RSC Advances,2016,6(51):45689−45695. doi: 10.1039/C6RA02931K -