• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

玉米醇溶蛋白/聚环氧乙烷同轴静电纺丝负载姜黄素及其释放特性

金晓春 安琪 王心雅 黄洪亮 甄诺 张浩 李云琦 刘景圣

金晓春,安琪,王心雅,等. 玉米醇溶蛋白/聚环氧乙烷同轴静电纺丝负载姜黄素及其释放特性[J]. 食品工业科技,2021,42(14):61−69. doi:  10.13386/j.issn1002-0306.2020110056
引用本文: 金晓春,安琪,王心雅,等. 玉米醇溶蛋白/聚环氧乙烷同轴静电纺丝负载姜黄素及其释放特性[J]. 食品工业科技,2021,42(14):61−69. doi:  10.13386/j.issn1002-0306.2020110056
JIN Xiaochun, AN Qi, WANG Xinya, et al. Release Characteristics of Curcumin Loaded on Zein/Poly (Ethylene Oxide) by Coaxial Electrospinning[J]. Science and Technology of Food Industry, 2021, 42(14): 61−69. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110056
Citation: JIN Xiaochun, AN Qi, WANG Xinya, et al. Release Characteristics of Curcumin Loaded on Zein/Poly (Ethylene Oxide) by Coaxial Electrospinning[J]. Science and Technology of Food Industry, 2021, 42(14): 61−69. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110056

玉米醇溶蛋白/聚环氧乙烷同轴静电纺丝负载姜黄素及其释放特性

doi: 10.13386/j.issn1002-0306.2020110056
基金项目: 国家自然科学基金项目(31801477,32072169,U1832177);现代农业产业技术体系专项(CARS-02)
详细信息
    作者简介:

    金晓春(1996−),男,硕士研究生,研究方向:玉米副产物高值化利用,E-mail:xcjin465244@163.com

    通讯作者:

    张浩(1985−),男,博士,副教授,研究方向:粮食深加工及功能性食品,E-mail:zhanghao3318@sina.com

    刘景圣(1964−),男,博士,教授,研究方向:粮食深加工及功能性食品,E-mail:liujingsheng@jlau.edu.com

  • 中图分类号: TS206.4

Release Characteristics of Curcumin Loaded on Zein/Poly (Ethylene Oxide) by Coaxial Electrospinning

  • 摘要: 玉米醇溶蛋白作为生产淀粉的副产物,大多应用在饲料方面,利用率低,本实验借助静电纺丝技术高值化利用玉米醇溶蛋白得到纳米纤维膜,并用于抗菌方面的研究。通过同轴静电纺丝技术研发具有核/壳结构负载姜黄素的玉米醇溶蛋白(Zein)纳米纤维,即将姜黄素负载在Zein和聚环氧乙烷(Polyethylene oxide,PEO)组成的三种核/壳结构纳米纤维中,并以透射电镜(TEM)、紫外分光(UV)、红外光谱(FT-IR)和XRD等进行相关表征。循环伏安(CV)的释放动力学研究表明在负载量为0.226、0.260、0.264 mg的基础上,姜黄素的封装效率达到96.02%、95.00%、90.15%,与姜黄素对Zein的亲和力略强于PEO一致;通过对姜黄素的电化学特性研究,发现玉米醇溶蛋白包聚环氧乙烷膜的缓释作用最好;借助SEM可以观察到姜黄素释放后纤维膜会出现孔洞,原有的结构遭到破坏;抗菌性研究发现,金黄色葡萄球菌比大肠杆菌的对姜黄素含量更敏感。同轴静电纺丝制得的负载姜黄素纳米纤维可用于功能性食品及生物医用产品的保鲜及贮藏保质。
  • 图  1  TEM表征分析

    Figure  1.  TEM characterization analysis

    注:a、b、c分别是样品Z-p+cur、Z/p-p+cur和Z/p-z+cur的透射电镜图;d和e是姜黄素及含姜黄素的纤维毡在不同纤维毡中的红外谱图,f是负载姜黄素纤维毡的XRD图。

    图  2  姜黄素在水溶液中的紫外吸光谱(a)和姜黄素浓度的标准曲线(b)

    Figure  2.  UV absorption spectrum of curcumin in aqueous solution(a)and the standard curve of curcumin concentration(b)

    图  3  a为姜黄素氧化还原的循环伏安曲线;b为峰值电流与扫描速率平方根的关系

    Figure  3.  a is the cyclic voltammetry curve of curcumin redox; b is the relationship between the peak current and the square root of the scanning rate

    图  4  不同纤维膜中姜黄素释放的循环伏安图(a、b、c)以及酸性条件下纤维中姜黄素的体外释放曲线(d)

    Figure  4.  Cyclic voltammograms of curcumin release from different fiber membranes (a, b, c) and in vitro release curve of curcumin from fiber under acidic condition (d)

    注:a、b、c中纤维膜分别为Z-p+cur、Z/p-p+cur、Z/p-z+cur。

    图  5  纤维毡释放前后的扫描电镜

    Figure  5.  Morphology of the scanning electron microscope before and after the release of the fiber mat

    注:a1、b1、c1分别代表Z-p、Z/p-p和Z/p-z;a2、b2、c2分别代表负载姜黄素的样品;a3、b3、c3分别是姜黄素释放后的形貌。

    图  6  大肠杆菌和金黄色葡萄球菌的生长曲线(a、c)及抑菌效率(b、d)

    Figure  6.  Growth curves (a, c) and antibacterial efficiency (b, d) of Escherichia coli and Staphylococcus aureus

    表  1  不同核壳纤维中姜黄素的封装效率

    Table  1.   Encapsulation efficiency of CUR-containing core-shell fibers

    样品称取的姜黄素的质量(mg)纤维中姜黄素的含量(mg)封装效率(%)
    Z-p+cur0.226±0.0030.217±0.00196.02
    Z/p-p+cur0.260±0.0020.247±0.00395.00
    Z/p-z+cur0.264±0.0030.238±0.00290.15
    下载: 导出CSV
  • [1] Gutierrez-Gonzalez Javier, Garcia-Cela Esther, Magan Naresh, et al. Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers[J]. Materials Letters,2020,270:127662. doi:  10.1016/j.matlet.2020.127662
    [2] Rafiee Z, Nejatian M, Daeihamed M, et al. Application of different nanocarriers for encapsulation of curcumin[J]. Crit Rev Food Sci Nutr,2019,59(21):3468−3497. doi:  10.1080/10408398.2018.1495174
    [3] Shaikh J, Ankola D D, Beniwal V, et al. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer[J]. Eur J Pharm Sci,2009,37(3-4):223−230. doi:  10.1016/j.ejps.2009.02.019
    [4] Anand Preetha, Kunnumakkara Ajaikumar B, Newman Robert A, et al. Bioavailability of curcumin: Problems and promises[J]. Molecular Pharmaceutics,2007,4(6):807−818. doi:  10.1021/mp700113r
    [5] Llorens E, Ibanez H, Del Valle L J, et al. Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol[J]. Mater Sci Eng C Mater Biol Appl,2015,49:472−484. doi:  10.1016/j.msec.2015.01.039
    [6] Rostami MohammadReza, Yousefi Mohammad, Khezerlou Arezou, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170. doi:  10.1016/j.foodhyd.2019.06.015
    [7] Shi Ce, Xi Shixia, Han Yingchun, et al. Structure, rheology and electrospinning of zein and poly(ethylene oxide) in aqueous ethanol solutions[J]. Chinese Chemical Letters,2019,30(2):305−310. doi:  10.1016/j.cclet.2018.07.010
    [8] 史册, 李云琦. 小角X光散射在蛋白质及其复合物领域的研究进展[J]. 高分子学报,2015(8):871−883. doi:  10.11777/j.issn1000-3304.2015.15048
    [9] Zhang H, Xi S, Han Y, et al. Determining electrospun morphology from the properties of protein-polymer solutions[J]. Soft Matter,2018,14(18):3455−3462. doi:  10.1039/C7SM02203D
    [10] Kayaci F, Uyar T. Electrospun zein nanofibers incorporating cyclodextrins[J]. Carbohydr Polym,2012,90(1):558−568. doi:  10.1016/j.carbpol.2012.05.078
    [11] Bui Hieu Trung, Chung Ok Hee, Park Jun Seo. Fabrication of electrospun antibacterial curcumin-loaded zein nanofibers[J]. Polymer Korea,2014,38(6):744−751. doi:  10.7317/pk.2014.38.6.744
    [12] Aguiar J, Estevinho B N, Santos L. Microencapsulation of natural antioxidants for food application-the specific case of coffee antioxidants-a review[J]. Trends in Food Science & Technology,2016,58:21−39.
    [13] Xue J, Xie J, Liu W, et al. Electrospun nanofibers: New concepts, materials, and applications[J]. Acc Chem Res,2017,50(8):1976−1987. doi:  10.1021/acs.accounts.7b00218
    [14] Alehosseini Ali, Gomez-Mascaraque Laura G, Martinez-Sanz Marta, et al. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications[J]. Food Hydrocolloids,2019,87:758−771. doi:  10.1016/j.foodhyd.2018.08.056
    [15] Zhu Miaomiao, Han Jingquan, Wang Fang, et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials and Engineering,2017,302(1):1600353. doi:  10.1002/mame.201600353
    [16] Yoon J, Yang H S, Lee B S, et al. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications[J]. Adv Mater,2018,30(42):e1704765. doi:  10.1002/adma.201704765
    [17] Huang Baoyu, Zhang Zhenxing, Zhao Changhui, et al. Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning[J]. Sensors and Actuators B: Chemical,2018,255:2248−2257. doi:  10.1016/j.snb.2017.09.022
    [18] 张浩, 黄洪亮, 董怡麟, 等. 同轴静电纺丝玉米醇溶蛋白和聚环氧乙烷不同核壳纤维的性能[J]. 高分子材料科学与工程,2019(11):116−122.
    [19] Ping Lan, Pizzi Antonio, Guo Zhou Ding, et al. Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive[J]. Industrial Crops and Products,2012,40:13−20. doi:  10.1016/j.indcrop.2012.02.039
    [20] Sun X Z, Williams G R, Hou X X, et al. Electrospun curcumin-loaded fibers with potential biomedical applications[J]. Carbohydr Polym,2013,94(1):147−153. doi:  10.1016/j.carbpol.2012.12.064
    [21] Yao Chen, Li Xinsong, Song Tangying, et al. Biodegradable nanofibrous membrane of zein/silk fibroin by electrospinning[J]. Polymer International,2009,58(4):396−402. doi:  10.1002/pi.2544
    [22] Wang H, Hao L, Niu B, et al. Kinetics and antioxidant capacity of proanthocyanidins encapsulated in zein electrospun fibers by cyclic voltammetry[J]. J Agric Food Chem,2016,64(15):3083−3090. doi:  10.1021/acs.jafc.6b00540
    [23] Moomand Khalid, Lim Loong-Tak. Oxidative stability of encapsulated fish oil in electrospun zein fibres[J]. Food Research International,2014,62:523−532. doi:  10.1016/j.foodres.2014.03.054
    [24] Masek Anna, Chrzescijanska Ewa, Zaborski Marian. Characteristics of curcumin using cyclic voltammetry, UV-Vis, fluorescence and thermogravimetric analysis[J]. Electrochimica Acta,2013,107:441−447. doi:  10.1016/j.electacta.2013.06.037
    [25] Bouman J, Belton P, Venema P, et al. Controlled release from zein matrices: Interplay of drug hydrophobicity and pH[J]. Pharm Res,2016,33(3):673−685. doi:  10.1007/s11095-015-1818-8
    [26] Corradini E, Curti P S, Meniqueti A B, et al. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials[J]. Int J Mol Sci,2014,15(12):22438−22470. doi:  10.3390/ijms151222438
    [27] Bound D J, Murthy P S, Srinivas P. Synthesis and antibacterial properties of 2, 3-dideoxyglucosides of terpene alcohols and phenols[J]. Food Chem,2015,185:192−199. doi:  10.1016/j.foodchem.2015.03.078
    [28] Cai Ruizhi, Wang Hualin, Cao Mengye, et al. Synthesis and antimicrobial activity of mesoporous hydroxylapatite/zinc oxide nanofibers[J]. Materials & Design,2015,87:17−24.
    [29] Bhawana, Basniwal R K, Buttar H S, et al. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study[J]. J Agric Food Chem,2011,59(5):2056−2061. doi:  10.1021/jf104402t
    [30] Lou Z, Wang H, Zhu S, et al. Antibacterial activity and mechanism of action of chlorogenic acid[J]. J Food Sci,2011,76(6):M398−403. doi:  10.1111/j.1750-3841.2011.02213.x
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  45
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-06
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回

    重要通知

    期待您的加入:《食品工业科技》2023年春招市场专员