Release Characteristics of Curcumin Loaded on Zein/Poly (Ethylene Oxide) by Coaxial Electrospinning
-
摘要: 玉米醇溶蛋白作为生产淀粉的副产物,大多应用在饲料方面,利用率低,本实验借助静电纺丝技术高值化利用玉米醇溶蛋白得到纳米纤维膜,并用于抗菌方面的研究。通过同轴静电纺丝技术研发具有核/壳结构负载姜黄素的玉米醇溶蛋白(Zein)纳米纤维,即将姜黄素负载在Zein和聚环氧乙烷(Polyethylene oxide,PEO)组成的三种核/壳结构纳米纤维中,并以透射电镜(TEM)、紫外分光(UV)、红外光谱(FT-IR)和XRD等进行相关表征。循环伏安(CV)的释放动力学研究表明在负载量为0.226、0.260、0.264 mg的基础上,姜黄素的封装效率达到96.02%、95.00%、90.15%,与姜黄素对Zein的亲和力略强于PEO一致;通过对姜黄素的电化学特性研究,发现玉米醇溶蛋白包聚环氧乙烷膜的缓释作用最好;借助SEM可以观察到姜黄素释放后纤维膜会出现孔洞,原有的结构遭到破坏;抗菌性研究发现,金黄色葡萄球菌比大肠杆菌的对姜黄素含量更敏感。同轴静电纺丝制得的负载姜黄素纳米纤维可用于功能性食品及生物医用产品的保鲜及贮藏保质。Abstract: As a by-product of starch production, zein is widely used in feed and has a low utilization rate. In this experiment, electrospinning technology was used to obtain nanofiber membranes by high-value use of zein, which was used for antibacterial research. The zein nanofibers with core/shell supported curcumin were developed by coaxial electrospinning. Curcumin was supported in three core/shell nanofibers made up of zein and polyethylene oxide (PEO), and characterized by transmission electron microscopy (TEM), UV, FT-IR and XRD. The results of cyclic voltammetry (CV) release kinetics showed that the encapsulation efficiency of curcumin reached 96.02%, 95.00% and 90.15% on the basis of loading capacity of 0.226, 0.260 and 0.264 mg, which was consistent with the affinity of curcumin to zein slightly stronger than that of PEO. By studying the electrochemical properties of curcumin, it was found that zein coated polyethylene oxide film had the best sustained-release effect; By SEM, it could be observed that after the release of curcumin, the fiber membrane appeared holes and the structure was destroyed. Antimicrobial studies showed that Staphylococcus aureus was more sensitive to curcumin than E. coli. The curcumin loaded nanofibers prepared by coaxial electrospinning could be used for the preservation and storage of functional food and biomedical products.
-
Key words:
- zein /
- polyethylene oxide /
- curcumin /
- electrospinning /
- encapsulation and embedding
-
表 1 不同核壳纤维中姜黄素的封装效率
Table 1. Encapsulation efficiency of CUR-containing core-shell fibers
样品 称取的姜黄素的质量(mg) 纤维中姜黄素的含量(mg) 封装效率(%) Z-p+cur 0.226±0.003 0.217±0.001 96.02 Z/p-p+cur 0.260±0.002 0.247±0.003 95.00 Z/p-z+cur 0.264±0.003 0.238±0.002 90.15 -
[1] Gutierrez-Gonzalez Javier, Garcia-Cela Esther, Magan Naresh, et al. Electrospinning alginate/polyethylene oxide and curcumin composite nanofibers[J]. Materials Letters,2020,270:127662. doi: 10.1016/j.matlet.2020.127662 [2] Rafiee Z, Nejatian M, Daeihamed M, et al. Application of different nanocarriers for encapsulation of curcumin[J]. Crit Rev Food Sci Nutr,2019,59(21):3468−3497. doi: 10.1080/10408398.2018.1495174 [3] Shaikh J, Ankola D D, Beniwal V, et al. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer[J]. Eur J Pharm Sci,2009,37(3-4):223−230. doi: 10.1016/j.ejps.2009.02.019 [4] Anand Preetha, Kunnumakkara Ajaikumar B, Newman Robert A, et al. Bioavailability of curcumin: Problems and promises[J]. Molecular Pharmaceutics,2007,4(6):807−818. doi: 10.1021/mp700113r [5] Llorens E, Ibanez H, Del Valle L J, et al. Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol[J]. Mater Sci Eng C Mater Biol Appl,2015,49:472−484. doi: 10.1016/j.msec.2015.01.039 [6] Rostami MohammadReza, Yousefi Mohammad, Khezerlou Arezou, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids,2019,97:105170. doi: 10.1016/j.foodhyd.2019.06.015 [7] Shi Ce, Xi Shixia, Han Yingchun, et al. Structure, rheology and electrospinning of zein and poly(ethylene oxide) in aqueous ethanol solutions[J]. Chinese Chemical Letters,2019,30(2):305−310. doi: 10.1016/j.cclet.2018.07.010 [8] 史册, 李云琦. 小角X光散射在蛋白质及其复合物领域的研究进展[J]. 高分子学报,2015(8):871−883. doi: 10.11777/j.issn1000-3304.2015.15048 [9] Zhang H, Xi S, Han Y, et al. Determining electrospun morphology from the properties of protein-polymer solutions[J]. Soft Matter,2018,14(18):3455−3462. doi: 10.1039/C7SM02203D [10] Kayaci F, Uyar T. Electrospun zein nanofibers incorporating cyclodextrins[J]. Carbohydr Polym,2012,90(1):558−568. doi: 10.1016/j.carbpol.2012.05.078 [11] Bui Hieu Trung, Chung Ok Hee, Park Jun Seo. Fabrication of electrospun antibacterial curcumin-loaded zein nanofibers[J]. Polymer Korea,2014,38(6):744−751. doi: 10.7317/pk.2014.38.6.744 [12] Aguiar J, Estevinho B N, Santos L. Microencapsulation of natural antioxidants for food application-the specific case of coffee antioxidants-a review[J]. Trends in Food Science & Technology,2016,58:21−39. [13] Xue J, Xie J, Liu W, et al. Electrospun nanofibers: New concepts, materials, and applications[J]. Acc Chem Res,2017,50(8):1976−1987. doi: 10.1021/acs.accounts.7b00218 [14] Alehosseini Ali, Gomez-Mascaraque Laura G, Martinez-Sanz Marta, et al. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications[J]. Food Hydrocolloids,2019,87:758−771. doi: 10.1016/j.foodhyd.2018.08.056 [15] Zhu Miaomiao, Han Jingquan, Wang Fang, et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials and Engineering,2017,302(1):1600353. doi: 10.1002/mame.201600353 [16] Yoon J, Yang H S, Lee B S, et al. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications[J]. Adv Mater,2018,30(42):e1704765. doi: 10.1002/adma.201704765 [17] Huang Baoyu, Zhang Zhenxing, Zhao Changhui, et al. Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning[J]. Sensors and Actuators B: Chemical,2018,255:2248−2257. doi: 10.1016/j.snb.2017.09.022 [18] 张浩, 黄洪亮, 董怡麟, 等. 同轴静电纺丝玉米醇溶蛋白和聚环氧乙烷不同核壳纤维的性能[J]. 高分子材料科学与工程,2019(11):116−122. [19] Ping Lan, Pizzi Antonio, Guo Zhou Ding, et al. Condensed tannins from grape pomace: Characterization by FTIR and MALDI TOF and production of environment friendly wood adhesive[J]. Industrial Crops and Products,2012,40:13−20. doi: 10.1016/j.indcrop.2012.02.039 [20] Sun X Z, Williams G R, Hou X X, et al. Electrospun curcumin-loaded fibers with potential biomedical applications[J]. Carbohydr Polym,2013,94(1):147−153. doi: 10.1016/j.carbpol.2012.12.064 [21] Yao Chen, Li Xinsong, Song Tangying, et al. Biodegradable nanofibrous membrane of zein/silk fibroin by electrospinning[J]. Polymer International,2009,58(4):396−402. doi: 10.1002/pi.2544 [22] Wang H, Hao L, Niu B, et al. Kinetics and antioxidant capacity of proanthocyanidins encapsulated in zein electrospun fibers by cyclic voltammetry[J]. J Agric Food Chem,2016,64(15):3083−3090. doi: 10.1021/acs.jafc.6b00540 [23] Moomand Khalid, Lim Loong-Tak. Oxidative stability of encapsulated fish oil in electrospun zein fibres[J]. Food Research International,2014,62:523−532. doi: 10.1016/j.foodres.2014.03.054 [24] Masek Anna, Chrzescijanska Ewa, Zaborski Marian. Characteristics of curcumin using cyclic voltammetry, UV-Vis, fluorescence and thermogravimetric analysis[J]. Electrochimica Acta,2013,107:441−447. doi: 10.1016/j.electacta.2013.06.037 [25] Bouman J, Belton P, Venema P, et al. Controlled release from zein matrices: Interplay of drug hydrophobicity and pH[J]. Pharm Res,2016,33(3):673−685. doi: 10.1007/s11095-015-1818-8 [26] Corradini E, Curti P S, Meniqueti A B, et al. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials[J]. Int J Mol Sci,2014,15(12):22438−22470. doi: 10.3390/ijms151222438 [27] Bound D J, Murthy P S, Srinivas P. Synthesis and antibacterial properties of 2, 3-dideoxyglucosides of terpene alcohols and phenols[J]. Food Chem,2015,185:192−199. doi: 10.1016/j.foodchem.2015.03.078 [28] Cai Ruizhi, Wang Hualin, Cao Mengye, et al. Synthesis and antimicrobial activity of mesoporous hydroxylapatite/zinc oxide nanofibers[J]. Materials & Design,2015,87:17−24. [29] Bhawana, Basniwal R K, Buttar H S, et al. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study[J]. J Agric Food Chem,2011,59(5):2056−2061. doi: 10.1021/jf104402t [30] Lou Z, Wang H, Zhu S, et al. Antibacterial activity and mechanism of action of chlorogenic acid[J]. J Food Sci,2011,76(6):M398−403. doi: 10.1111/j.1750-3841.2011.02213.x -