Effects of Different Thawing Methods on Physicochemical Properties and Oxidation Stability of Porcine Liver
-
摘要: 本研究旨在探讨静水解冻、自然解冻、冷藏解冻、微波解冻和超声波解冻方式对猪肝理化特性及氧化稳定性的影响,试验测定了猪肝菌落总数、pH、解冻损失、色泽、POV值、TBA值、羰基含量及巯基含量。结果表明,不同解冻方式所需解冻时间不同,其中微波解冻速率最快,冷藏解冻速率最慢。微波解冻可以较好的控制微生物数量,降低猪肝的解冻损失,但会加剧脂质和蛋白质氧化;冷藏解冻和超声波解冻后猪肝的色泽较好,脂质和蛋白质氧化程度低,但超声波解冻损失高于冷藏解冻。统计分析表明,解冻损失与pH、色泽、脂质氧化及蛋白质氧化相关性显著(P<0.05),蛋白质氧化、脂质氧化与色泽相关性显著(P<0.05),脂质氧化与蛋白质氧化间也存在显著相关性(P<0.05)。总体来讲,冷藏解冻可作为调理猪肝较适宜的解冻方式,而超声波解冻条件仍需要进一步研究。Abstract: To study the effects of thawing methods, including water immersion thawing, ambient temperature thawing, refrigeration thawing, microwave thawing, and ultrasonic thawing, on the physicochemical properties and oxidation stability of porcine liver, the total number of colonies, pH, thawing loss, color, POV value, TBA value, carbonyl content, and sulfhydryl content were investigated. The results showed that the thawing rates were different depending on thawing methods; microwave thawing had the shortest thawing time, whereas refrigeration thawing had the longest thawing time. Microwave thawing controlled the microbe quantity and reduced the thawing loss, but increased the oxidation of lipids and proteins. Refrigeration thawing and ultrasonic thawing had better color and lower oxidation of lipid and protein, while the thawing loss of porcine liver under ultrasonic conditions was higher than that in a refrigerator. The statistical analysis demonstrated that thawing loss had significant correlations to the pH, color, lipid oxidation and protein oxidation (P<0.05), and lipid protein and protein oxidation were highly linked to the color (P<0.05). In addition, we also observed a high correlation between lipid oxidation and protein oxidation (P<0.05). Overall, refrigeration thawing could be more suitable methods for the thawing of porcine liver, and ultrasonic thawing conditions need to be further studied.
-
Key words:
- porcine liver /
- thawing method /
- physicochemical property /
- lipid oxidation /
- protein oxidation
-
表 1 猪肝的解冻参数
Table 1. Thawing parameters of porcine liver
解冻方法 操作过程 静水解冻 将真空包装的冻结猪肝完全浸没于18±0.5 °C静水中解冻,猪肝与水的质量比为1:8 自然解冻 将真空包装的冻结猪肝置于周围没有热源的玻璃托盘上,于室温20±1 °C条件下进行解冻 冷藏解冻 将真空包装的冻结猪肝置于玻璃托盘中,放入4 °C冰箱进行解冻 微波解冻 将真空包装的冻结猪肝置于玻璃托盘中,置于800 W的微波炉中进行解冻 超声波解冻 将真空包装的冻结猪肝完全浸没于18±0.5 °C超声波清洗仪(80%功率,240 W)中进行解冻,猪肝与水的质量比为1:8 表 2 不同解冻方式下猪肝的菌落总数
Table 2. Total bacterial counts in porcine liver under different thawing methods
解冻方式 菌落总数(lg CFU/g) 解冻方式 菌落总数(lg CFU/g) 对照 5.52±0.07d 冷藏 4.40±0.25b 静水 5.01±0.02c 微波 4.06±0.06a 自然 5.16±0.15c 超声波 4.32±0.02b 注:同列肩标不同小写字母表示差异显著(P<0.05);表3同。 表 3 不同解冻方式下猪肝色泽的变化
Table 3. Color changes of porcine liver under different thawing methods
解冻方式 L* a* b* 对照 27.47±0.63a 16.86±0.38c 4.34±0.56a 静水 31.71±1.65bc 14.06±0.81b 6.66±0.80bc 自然 31.97±0.83bc 10.82±0.18a 7.47±0.65c 冷藏 30.72±1.26b 13.77±0.69b 6.53±0.59bc 微波 33.29±0.42cd 14.29±0.30b 6.31±0.13b 超声波 33.88±0.79d 14.08±0.56b 6.14±0.13b 表 4 相关性分析结果
Table 4. Results of correlation analysis
指标 pH 解冻损失 L*值 a*值 b*值 POV值 TBA值 羰基含量 巯基含量 pH值 1 −0.603** −0.312 0.438 −0.412 −0.539* −0.216 −0.394 0.577* 解冻损失 1 0.762* −0.489* 0.565* 0.565* 0.508* 0.549* −0.793** L*值 1 −0.526** 0.688** 0.309 −0.548* 0.489* −0.800** a*值 1 −0.845** −0.488* −0.400 −0.682** 0.721** b*值 1 0.447 0.429 0.729** −0.861** POV值 1 0.508* 0.678** −0.513* TBA值 1 0.662** −0.574* 羰基含量 1 −0.671** 巯基含量 1 注:**表示在0.01级别极显著;*表示在0.05级别显著。 -
[1] 张长贵, 董加宝, 王祯旭. 畜禽副产物的开发利用[J]. 肉类研究,2006(3):40−43. doi: 10.3969/j.issn.1001-8123.2006.03.015 [2] 任政伟, 丁捷, 熊婷婷, 等. 软包装预调理泡椒猪肝大蒜提取物复配防腐剂研发及应用[J]. 包装工程,2020,41(19):31−37. [3] 戚彪, 曲超, 成晓瑜, 等. 微波杀菌对卤猪肝品质特性的影响[J]. 食品科学,2013,34(1):69−72. [4] Estevez M, Ventanas S, Cava R. Effect of natural and synthetic antioxidants on protein oxidation and colour and texture changes in refrigerated stored porcine liver pté[J]. Meat science,2006,74(2):396−403. doi: 10.1016/j.meatsci.2006.04.010 [5] Uyar R, Bedane T F, Erdogdu F, et al. Radio-frequency thawing of food products-A computational study[J]. Journal of Food Engineering,2015,146:163−171. doi: 10.1016/j.jfoodeng.2014.08.018 [6] Li F F, Wang B, Liu Q, et al. Changes in myofibrillar protein gel quality of porcine longissimus muscle induced by its stuctural modification under different thawing methods[J]. Meat Science,2019,147:108−115. doi: 10.1016/j.meatsci.2018.09.003 [7] Zhu M M, Peng Z Y, Lu S, et al. Physicochemical properties and protein denaturation of pork Longissimus Dorsi muscle subjected to six microwave-based thawing methods[J]. Foods,2020,9:26. [8] 张馨月, 邓绍林, 胡洋健, 等. 几种新型解冻技术对肉品质影响的研究进展[J]. 食品与发酵工业,2020,46(12):293−298. [9] Xia X F, Kong B H, Liu J, et al. Influence of different thawing methods on physicochemical changes and protein oxidation of porcine longissimus muscle[J]. LWT-Food Science and Technology,2012,46(1):280−286. doi: 10.1016/j.lwt.2011.09.018 [10] 王凤玉, 曹荣, 赵玲, 等. 解冻方式对冷冻秋刀鱼品质的影响[J]. 食品安全质量检测学报,2015,6(11):4584−4590. [11] Oliveira M R, Gubert G, Roman S S, et al. Meat quality of chicken breast subjected to different thawing methods[J]. Brazilian Journal of Poultry Science,2015,17(2):165−172. doi: 10.1590/1516-635x1702165-172 [12] 彭泽宇, 朱明明, 孙红东, 等. 肉品新型解冻技术及其对蛋白特性影响的研究进展[J]. 食品科学,2020,41(19):303−310. doi: 10.7506/spkx1002-6630-20190920-259 [13] Vareltzis P, Hultin H O, Autio W R. Hemoglobin-mediated lipid oxidation of protein isolates obtained from cod and haddock white muscle as affected by citric acid, calcium chloride and pH[J]. Food Chemistry,2008,108(1):64−74. doi: 10.1016/j.foodchem.2007.10.043 [14] 李德海, 徐颖, 顾嘉琳, 等. 黑木耳多糖对猪肉糜质构及氧化特性的影响[J]. 食品科学,2016,37(15):88−93. doi: 10.7506/spkx1002-6630-201615015 [15] Mercier Y, Gatellier P, Viau M. Effect of dietary fat and vitamin E on colour stability and on lipid and protein oxidation in Turkey meat during storage[J]. Meat Science,1998,48(3):301−318. [16] Gornall A G, Bardawill C J, David M M. Determination of serum proteins by means of biuret reaction[J]. Journal of Biological Chemistry,1949,177:751−766. doi: 10.1016/S0021-9258(18)57021-6 [17] Soyer A, Özalp B, Dalm Ü, et al. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat[J]. Food Chemistry,2010,120(4):1025−1030. doi: 10.1016/j.foodchem.2009.11.042 [18] 朱明明, 王亚秋, 刘新建, 等. 快速与慢速解冻对冷冻猪肉品质特性及蛋白变性的影响[J]. 食品工业科技,2018,39(23):23−30. [19] 曹荣, 陈岩, 赵玉然, 等. 解冻方式对南极磷虾加工品质的影响[J]. 农业工程学报,2015,31(17):289−294. doi: 10.11975/j.issn.1002-6819.2015.17.038 [20] 秦凤贤, 陈巍, 胡铁军, 等. 四种不同解冻方式对鹿肉品质的影响[J]. 黑龙江畜牧兽医,2016,12(23):210−212. [21] 刘燕, 王锡昌, 刘源. 黄鳍金枪鱼块常用解冻方法的比较[J]. 食品科学,2010,31(15):8−12. [22] 牛改改, 秦成丰, 游刚, 等. 解冻方式对近江牡蛎肉感官特征和理化指标的影响[J]. 食品工业科技,2020,41(16):271−278. [23] 程天赋, 蒋奕, 张翼飞, 等. 基于低场核磁共振研究不同解冻方式对冻猪肉食用品质的影响[J]. 食品科学,2019,40(7):20−26. doi: 10.7506/spkx1002-6630-20171127-333 [24] Xiong Y L, Park D, Ooizumi T. Variation in the Cross-linking pattern of porcine myofibrillar protein exposed to three oxidative environments[J]. Journal of Agricultural and Food Chemistry,2009,57(1):153−159. doi: 10.1021/jf8024453 [25] Dias J, Nunes M L, Mendes R. Effect of frozen storage on the chemical and physical properties of black and silver scabbard fish[J]. Journal of the Science of Food and Agriculture,1994,66:327−335. doi: 10.1002/jsfa.2740660310 [26] Zakrys P I, Hogan S A, O’Sullivan M G, et al. Effects of oxygen concentration on the sensory evaluation and quality indicators of beef muscle packed under modified atmosphere[J]. Meat Science,2008,79(4):648−655. doi: 10.1016/j.meatsci.2007.10.030 [27] 余力, 贺稚非, Enkhmaa B, 等. 不同解冻方式对伊拉兔肉品质特性的影响[J]. 食品科学,2015,36(14):258−264. doi: 10.7506/spkx1002-6630-201514049 [28] Ballin N Z, Lametsch R. Analytical methods for authentication of fresh vs. thawed meat - A review[J]. Meat Science,2008,80(2):151−158. doi: 10.1016/j.meatsci.2007.12.024 [29] Benjakul S, Bauerb F. Biochemical and physicochemical changes in catfish(Silurus glanis Linne) muscle as influenced by different freeze-thaw cycles[J]. Food Chemistry,2001,72(2):207−217. doi: 10.1016/S0308-8146(00)00222-3 [30] 蒋奕, 程天赋, 王吉人, 等. 超声波解冻对猪肉品质的影响[J]. 肉类研究,2017,31(11):14−19. [31] 张绍志, 陈光明, 尤鹏青. 基于超声波的食品解冻技术研究[J]. 农业机械学报,2003,34(5):99−101. doi: 10.3969/j.issn.1000-1298.2003.05.028 [32] Xiao S, Zhang W G, Lee E J, et al. Lipid and protein oxidation of chicken breast rolls as affected by dietary oxidation levels and packaging[J]. Journal of Food Science,2011,76(4):C612−C617. doi: 10.1111/j.1750-3841.2011.02137.x [33] 李慢, 马晓彬, 王文骏, 等. 解冻方式对中国对虾品质的影响[J]. 中国食品学报,2019,19(5):182−190. [34] 阚建全. 食品化学[M]. 北京: 中国农业大学出版社, 2003. [35] Delles R M, Xiong Y L. The effect of protein oxidation on hydration and water-binding in pork packaged in an oxygen-enriched atmosphere[J]. Meat Science,2014,97(2):181−188. doi: 10.1016/j.meatsci.2014.01.022 [36] 赵冰, 张顺亮, 李素, 等. 脂肪氧化对肌原纤维蛋白氧化及其结构和功能性质的影响[J]. 食品科学,2018,39(5):40−46. doi: 10.7506/spkx1002-6630-201805007 [37] 焦艺, 刘璇, 毕金峰, 等. 基于灰色关联度和层次分析法的油桃果汁品质评价[J]. 中国食品学报,2014,14(12):154−163. [38] Anon M C, Cavelo A. Freezing rateeffects on the drip loss of frozen beef[J]. Meat Science,1980,4(1):1−14. doi: 10.1016/0309-1740(80)90018-2 [39] 李玲, 郭燕云, 周怡. 氧化程度对肌原纤维蛋白理化特性和凝胶水分分布的影响[J]. 食品与发酵工业,2019,45(6):101−107. [40] 张丽, 余群力, 孙宝忠. 肌肉蛋白氧化对肉类品质的影响[J]. 食品与发酵工业,2017,43(5):268−278. [41] Yu Q P, Feng D Y, Xiao J, et al. Studies on meat color, myoglobin content, enzyme activities, and genes associated with oxidative potential of pigs slaughtered at different growth stages[J]. Asian Australasian Journal of Animal Sciences,2017,30(12):1739−1750. doi: 10.5713/ajas.17.0005 [42] Utrera M, Morcuende D, Estévez M. Fat content has a significant impact on protein oxidation occurred during frozen storage of beef patties[J]. LWT-Food Science and Technology,2014,56(1):62−68. doi: 10.1016/j.lwt.2013.10.040 [43] Mancini R A, Ramanathan R. Effects of postmortem storage time on color and mitochondria in beef[J]. Meat Science,2014,98(1):65−70. doi: 10.1016/j.meatsci.2014.04.007 [44] Estévez M. Protein carbonyls in meat systems: A review[J]. Meat Science,2011,89(3):259−279. doi: 10.1016/j.meatsci.2011.04.025 -