• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

茶树精油对耐甲氧西林金黄色葡萄球菌生物被膜的影响

程峰 刘宇 杨珍 莫亚男 尚若锋 郝宝成 王学红 梁剑平

程峰,刘宇,杨珍,等. 茶树精油对耐甲氧西林金黄色葡萄球菌生物被膜的影响[J]. 食品工业科技,2021,42(14):107−112. doi:  10.13386/j.issn1002-0306.2020110063
引用本文: 程峰,刘宇,杨珍,等. 茶树精油对耐甲氧西林金黄色葡萄球菌生物被膜的影响[J]. 食品工业科技,2021,42(14):107−112. doi:  10.13386/j.issn1002-0306.2020110063
CHENG Feng, LIU Yu, YANG Zhen, et al. Effect of Tea Tree Oil on Methicillin-resistant Staphylococcus aureus Biofilm[J]. Science and Technology of Food Industry, 2021, 42(14): 107−112. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110063
Citation: CHENG Feng, LIU Yu, YANG Zhen, et al. Effect of Tea Tree Oil on Methicillin-resistant Staphylococcus aureus Biofilm[J]. Science and Technology of Food Industry, 2021, 42(14): 107−112. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110063

茶树精油对耐甲氧西林金黄色葡萄球菌生物被膜的影响

doi: 10.13386/j.issn1002-0306.2020110063
基金项目: 中国农业科学院创新工程兽用天然药物创新团队项目(CAAS-ASTIP-2014-LIHPS-04);兰州市科技计划项目(2018-1-114);中国农业科学院创新工程所级重点任务(CAAS-LMY-03)
详细信息
    作者简介:

    程峰(1996−),男,硕士研究生,研究方向:天然药物研究与开发,E-mail:17752522760@163.com

    通讯作者:

    梁剑平(1962−),男,博士,研究员,研究方向:天然药物研究与开发,E-amil:liangjp100@sina.com

  • 中图分类号: TS225.1+9

Effect of Tea Tree Oil on Methicillin-resistant Staphylococcus aureus Biofilm

  • 摘要: 本文研究了茶树精油对耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus,MRSA)生物被膜的影响及其作用机制。首先测定了茶树精油对1株MRSA标准菌株及12株金黄色葡萄球菌分离菌株的MIC值为0.08%~0.32%。结晶紫半定量染色实验发现0.16%的茶树精油对MRSA生物被膜形成有抑制作用,结晶紫半定量染色实验和激光共聚焦显微镜发现0.32%的茶树精油可完全清除MRSA成熟的生物被膜,0.16%可明显破坏其生物被膜。抗生物被膜机制的初步探究发现茶树精油可以抑制MRSA生物被膜形成过程中多糖黏附素(polysaccharide intercellular adhesion,PIA)和胞外DNA(extracellular DNA,eDNA)的分泌以及物被膜形成相关基因agr、ica、cid、sar的表达。因此,茶树精油具有强大的抗生物被膜作用,可能机制是抑制其PIA的合成,eDNA的分泌以及生物被膜形成相关基因的表达。
  • 图  1  茶树精油对MRSA生物被膜生长的抑制效果

    Figure  1.  Inhibition effect of tea essential oil on MRSA biofilm growth

    图  2  茶树精油对MRSA成熟生物被膜的清除作用

    Figure  2.  Clearance of tea tree oil against MRSA mature biofilm

    注:与对照组相比,**表示数据差异极显著,P<0.01;图5同 。

    图  3  激光共聚焦显微镜细下MRSA生物被膜图像

    Figure  3.  CLSM image of LIVE/DEAD stained MRSA biofilms grown on cell slide

    注:A、B、C、D中茶树精油浓度分别为0、0.04%、0.08%、0.16%;绿色代表活细菌,红色代表死细菌。

    图  4  茶树精油对MRSA生物被膜中PIA的影响

    Figure  4.  Effect of tea tree oil on PIA in MRSA biofilm

    注:A、B、C、D中茶树精油浓度分别为0、0.02%、0.04%、0.08% 。

    图  5  茶树精油对eDNA分泌的影响

    Figure  5.  Influence of tea tree oil effect on the secretion of eDNA

    表  1  PCR引物

    Table  1.   PCR primer

    引物名称序列长度
    icaA-FGGCTGGACTCATATTTGTAAGTTGG25
    icaA-RGTATTCCCTCTGTCTGGGCTTG22
    cidA-FTGTACCGCTAACTTGGGTAGAAGAC25
    cidA-RCGGAAGCAACATCCATAATACCTAC25
    agrA-FTGCGAAGACGATCCAAAACA20
    agrA-RGGGCAATTTCCATAGGCTTTTC22
    sarA-FTGGTTCTCATCTCCCTTTGCTT22
    sarA-RGCGATGCTAATCTTCCTGGTG21
    16S-RGCTCGTGTCGTGAGATGTTGG21
    16S-FTTTCGCTGCCCTTTGTATTGT21
    下载: 导出CSV

    表  2  茶树精油对金黄葡萄球菌的MIC值

    Table  2.   MIC of tea tree oil against Staphylococcus aureus

    菌株MIC值(%)MBC值(%)
    ATCC433000.320.32
    S-10.160.32
    S-20.080.16
    S-30.160.16
    S-40.160.16
    S-50.160.16
    S-60.160.16
    S-70.160.16
    S-80.160.16
    S-90.320.32
    S-100.160.16
    S-110.160.32
    S-120.160.32
    下载: 导出CSV

    表  3  茶树精油作用后MRSA部分基因表达量的变化

    Table  3.   Changes in the expression of some genes in MRSA treatment by tea tree essential oil

    基因名称对照组表达量处理组表达量表达量变化
    agrA1.0000.320−3.13±0.16
    cidA1.0000.188−5.31±0.19
    sarA1.0000.474−2.10±0.22
    icaA1.0000.242−4.13±1.11
    下载: 导出CSV
  • [1] M Otto. Community-associated MRSA: What makes them special?[J]. Int J Med Microbiol,2013,303(6-7):324−330. doi:  10.1016/j.ijmm.2013.02.007
    [2] Sahreena Lakhundi, Zhang Kunyan. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology[J]. Clinical microbiology reviews,2018,31(4).
    [3] Furukawa S, Kuchma S L, O'Toole G A. Keeping their options open: Acute versus persistent infections[J]. J Bacteriol,2006,188(4):1211−1217. doi:  10.1128/JB.188.4.1211-1217.2006
    [4] Holder D, Berry D, Dai D, et al. A dynamic and complex monochloramine stress response in Escherichia coli revealed by transcriptome analysis[J]. Water Res,2013,47(14):4978−4985. doi:  10.1016/j.watres.2013.05.041
    [5] Thien-Fah Mah. Biofilm-specific antibiotic resistance[J]. Future Microbiology,2012,7(9):1061−1072. doi:  10.2217/fmb.12.76
    [6] Frieri M, Kumar K, Boutin A. Antibiotic resistance[J]. J Infect Public Health,2017,10(4):369−378. doi:  10.1016/j.jiph.2016.08.007
    [7] Ranall M V, Butler M S, Blaskovich M A, et al. Resolving biofilm infections: Current therapy and drug discovery strategies[J]. Curr Drug Targets,2012,13(11):1375−1385. doi:  10.2174/138945012803530251
    [8] Thomas Bjarnsholt, Ciofu Oana, Molin Søren, et al. Applying insights from biofilm biology to drug development−can a new approach be developed?[J]. Nature Reviews Drug Discovery,2013,12(10):791−808. doi:  10.1038/nrd4000
    [9] 程峰, 尚若锋, 杨珍, 等. 茶树精油抗微生物作用机理研究进展[J]. 食品工业科技,2021,3(42):331−337.
    [10] Zhao Xingchen, Liu Zonghui, Liu Zuojia, et al. Phenotype and RNA-seq-Based transcriptome profiling of Staphylococcus aureus biofilms in response to tea tree oil[J]. Microbial Pathogenesis,2018:123304−123313.
    [11] Li Zhenbiao, Wang Nan, Wei Yingying, et al. Terpinen-4-ol enhances disease resistance of postharvest strawberry fruit more effectively than tea tree oil by activating the phenylpropanoid metabolism pathway[J]. Journal of Agricultural and Food Chemistry,2020,68(24):6739−6747. doi:  10.1021/acs.jafc.0c01840
    [12] Garozzo A, Timpanaro R, Stivala A, et al. Activity of Melaleuca alternifolia (tea tree) oil on influenza virus A/PR/8: Study on the mechanism of action[J]. Antiviral Research,2011,89(1):83−88. doi:  10.1016/j.antiviral.2010.11.010
    [13] James P J, Callander J T. Bioactivity of tea tree oil from Melaleuca alternifolia against sheep lice (Bovicola ovis Schrank) in vitro[J]. Veterinary Parasitology,2012,187(3-4):498−504. doi:  10.1016/j.vetpar.2012.02.004
    [14] Yusaku Koseki, Tanaka Rika, Murata Hiroshi. Development of antibacterial denture cleaner for brushing containing tea tree and lemongrass essential oils[J]. Dental Materials Journal,2018,37(4):659−666. doi:  10.4012/dmj.2017-295
    [15] Srdjan Stepanovic, Vukovic Dragana, Hola Veronika, et al. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci[J]. APMIS: Acta Pathologica, Microbiologica et Immunologica Scandinavica,2007,115(8):891−899. doi:  10.1111/j.1600-0463.2007.apm_630.x
    [16] 官妍, 章九云, 汪长中, 等. 穿心莲内酯对表皮葡萄球菌生物被膜作用初探[J]. 中国中药杂志,2012,37(14):2147−2150.
    [17] Kelly C Rice, Ethan E Mann, Jennifer L Endres, et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(19):8113−8118. doi:  10.1073/pnas.0610226104
    [18] Pankey G A, Sabath L D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections[J]. Clin Infect Dis,2004,38(6):864−870. doi:  10.1086/381972
    [19] Hannah Mc Carthy, Rudkin Justine K, Black Nikki S, et al. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus[J]. Frontiers in Cellular and Infection Microbiology,2015:5.
    [20] Das T, Sehar S, Koop L, et al. Influence of calcium in extracellular DNA mediated bacterial aggregation and biofilm formation[J]. PLoS One,2014,9(3):e91935. doi:  10.1371/journal.pone.0091935
    [21] Qin Zhiqiang, Ou Yuanzhu, Yang Liang, et al. Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis[J]. Microbiology,2007,153(7):2083−2092. doi:  10.1099/mic.0.2007/006031-0
    [22] Yao Yufeng, Vuong Cuong, Kocianova Stanislava, et al. Characterization of the Staphylococcus epidermidis accessory-gene regulator response: Quorum-sensing regulation of resistance to human innate host defense[J]. The Journal of infectious diseases,2006,193(6):841−848. doi:  10.1086/500246
    [23] Liu Meihui, Wu Xiaoxia, Li Jianke, et al. The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon[J]. Food Control,2017:73613−618.
    [24] Adriana Renzoni, Barras Christine, François Patrice, et al. Transcriptomic and functional analysis of an autolysis-deficient, teicoplanin-resistant derivative of methicillin-resistant Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy,2006,50(9):3048−3061. doi:  10.1128/AAC.00113-06
    [25] Valle J, Toledo Arana A, Berasain C, et al. SarA and not sigmaB is essential for biofilm development byStaphylococcus aureus[J]. Mol Microbiol,2003,48(4):1075−1087. doi:  10.1046/j.1365-2958.2003.03493.x
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  77
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回

    重要通知

    期待您的加入:《食品工业科技》2023年春招市场专员