Pretreatment of Corn Starch by Extrusion Combined with Soaking in Sulfite Acid
-
摘要: 为解决传统玉米湿磨工艺浸泡时间长、淀粉提取率低的问题,展开了挤压技术对玉米淀粉提取预处理的可行性研究。以淀粉提取率和淀粉纯度为考察指标,分别研究挤压温度、挤压水分、螺杆转速、H2SO3浸泡时间对玉米淀粉提取率和淀粉纯度的影响。在单因素实验的基础上,采用四因素三水平的响应面分析法确定玉米淀粉提取工艺。结果表明,玉米淀粉提取的最佳工艺为:挤压温度40 ℃、挤压水分53%、螺杆转速194 r/min、H2SO3浸泡时间14 h。在此条件下玉米淀粉提取率达到了93.25%,相比传统湿磨工艺提高了1.79%,生产时间缩短34 h。通过红外光谱(FT-IR)分析发现,采用挤压预处理并未导致淀粉化学结构的改变;扫描电镜(SEM)图像表明挤压制备的淀粉颗粒表面出现轻微褶皱和凹陷,但颗粒形状依旧保持完整。故挤压技术应用于玉米淀粉的分离提取是有效可行的。Abstract: In order to solve the problems of long soaking time and low starch yield in traditional corn wet milling process, the feasibility of extrusion technology as pretreatment for corn to improve the starch extraction was carried out. The extraction rate and the purity of starch were studied by changing the extrusion temperature, extrusion moisture, screw speed, soaking time of H2SO3. After the single factor experiments, the response surface analysis (RSA) method which had four factors and three levels were used to determine the extraction technology of corn starch. The results showed that, the optimum process of corn starch extraction was that: The extrusion temperature was 40 ℃, extrusion moisture was 53%, the screw rotation speed was 194 r/min and the soaking time of H2SO3 was 14 h. The starch extraction rate reached to 93.25% in this method, which was 1.79% higher than that in traditional wet grinding process, and the production time was shortened by 34 h. Fourier transform infrared spectroscopy (FT-IR) showed that extruding pretreatment did not change the chemical structure of starch and the scanning electron microscope (SEM) images showed that, though slight wrinkles and depressions appeared on the surface of extruded starch granules, the shape of the particle remained intact. Therefore, it was confirmed that extrusion technology was effective to separate and extract the corn starch.
-
Key words:
- wet-milling /
- extrusion technology /
- corn starch /
- response surface method /
- extraction rate
-
表 1 响应面设计自变量因素水平设计
Table 1. Response surface design independent variable factor level
水平 因素 挤压温度(℃) 挤压水分(%) 螺杆转速(r/min) 浸泡时间(h) −1 40 45 140 10 0 45 50 180 12 1 50 55 220 14 表 2 响应面工艺优化及结果分析
Table 2. Process optimization and results of response surface methodology
实验号 A B C D 玉米淀粉 挤压温度(℃) 挤压水分(%) 螺杆转速(r/min) 浸泡时间(h) 提取率(%) 1 45 55 220 12 92.27±0.09 2 50 45 180 12 91.64±0.12 3 45 45 140 12 91.92±0.12 4 40 50 180 10 90.94±0121 5 40 55 180 12 92.25±0.11 6 45 50 180 12 92.58±0.13 7 40 50 220 12 91.94±0.09 8 50 55 180 12 91.79±0.09 9 45 55 140 12 91.46±0.17 10 45 50 140 14 92.03±0.16 11 45 45 220 12 91.06±0.18 12 50 50 180 10 91.46±0.11 13 50 50 220 12 91.11±0.06 14 40 50 180 14 93.25±0.16 15 45 55 180 10 91.36±0.09 16 45 45 180 10 90.81±0.28 17 50 50 180 12 92.69±0.29 18 50 50 140 12 91.58±0.13 19 45 50 220 10 90.57±0.17 20 40 45 180 12 91.88±0.15 21 50 50 180 14 92.02±0.14 22 45 50 140 10 91.05±0.16 23 45 50 180 12 92.52±0.22 24 40 50 140 12 91.51±0.13 25 45 45 180 14 92.34±0.19 26 45 55 180 14 92.62±0.18 27 45 50 220 14 92.36±0.14 28 45 50 180 12 92.41±0.16 29 45 50 180 12 92.46±0.16 表 3 回归方程的方差分析结果
Table 3. Results of variance analysis of regression equation
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 11.83 14 0.84 80.68 <0.0001 ** A-挤压温度 0.39 1 0.39 37.47 <0.001 ** B-挤压水分 0.37 1 0.37 35.09 <0.001 ** C-螺杆转速 0.048 1 0.048 0.46 0.5094 D-浸泡时间 5.92 1 5.92 565.46 <0.001 ** AB 0.012 1 0.012 1.16 0.3006 AC 0.20 1 0.20 19.34 0.0006 ** AD 0.77 1 0.77 73.10 <0.0001 ** BC 0.70 1 0.070 66.57 <0.0001 ** BD 0.018 1 0.018 1.74 0.2083 CD 0.16 1 0.16 15.6 0.0014 ** A2 0.63 1 0.63 60.39 <0.0001 ** B2 0.62 1 0.62 58.95 <0.0001 ** C2 2.54 1 2.54 242.71 <0.0001 ** D2 0.95 1 0.95 90.50 <0.001 ** 残差 0.15 14 0.010 失拟项 0.099 10 0.099 0.84 0.6298 净误差 0.047 4 0.012 总离差 11.98 28 注:*表示影响显著,P<0.05;**表示影响极显著,P<0.01;R2=0.9461;R2Adj=0.9755。 表 4 传统湿磨工艺与挤压联用H2SO3工艺对比
Table 4. Basic components of corn starch prepared by different preparation technology
指标 传统湿磨法制备玉米淀粉 挤压联用H2SO3浸泡
制备玉米淀粉淀粉提取率(%) 91.46±0.25 93.25±0.16 淀粉含量(干基)(%) 94.37±0.37 95.15±0.46 H2SO3浸泡时间(h) 48 14 -
[1] 袁鹏, 潘琤, 周林, 等. 玉米淀粉深加工产品的应用[J]. 粮食与食品业,2010,17(4):23−25. [2] Anderson T J, Lamsal B P. Zein et al. Extraction from corn, corn products, and coproducts and modifications for various applications: A review[J]. Cereal Chemistry,2011,88(2):159−173. doi: 10.1094/CCHEM-06-10-0091 [3] 任海松, 董海洲, 侯汉学. 酶法提取玉米淀粉工艺研究[J]. 中国粮油学报,2008,23(1):58−60. [4] 李晓娜, 张莉力, 穆静, 等. L-半胱氨酸与发酵酸浆协同作用优化玉米湿磨工艺[J]. 食品科学,2014,35(12):1−6. doi: 10.7506/spkx1002-6630-201412001 [5] 刘庆艾, 马恒, 马耀宏, 等. 乳酸与酸性蛋白酶协同浸泡在玉米浸泡工艺中的应用[J]. 食品科技,2018,43(1):258−261. [6] 苏雪锋, 黄继红, 惠明, 等. 酶与细胞渗透剂协同浸泡提取玉米淀粉的研究[J]. 河南工业大学学报(自然科学版),2014,35(2):38−42. [7] 孔茂竹, 孔露, 余佳熹, 等. 响应面法优化两步浸泡提取玉米淀粉工艺[J]. 食品科技,2019,44(10):269−275. [8] 王亚丹. 超声波改进玉米淀粉提取工艺的研究[D]. 郑州: 河南工业大学, 2018. [9] Nicolas L, Guy D V, A Rolland-S, et al. How does temperature govern mechanisms of starch changes during extrusion?[J]. Carbohydrate Polymers,2018,184:57−65. doi: 10.1016/j.carbpol.2017.12.040 [10] Von Borries-Medrano E, Jaime-Fonseca, Mónica R, et al. Addition of galactomannans and citric acid in corn starch processed by extrusion: Retrogradation and resistant starch studies[J]. Food Hydrocolloids,2018,83(1):485−496. [11] Li M, Hasjim J, Xie F, et al. Shear degradation of molecular, crystalline, and granular structures of starch during extrusion[J]. Starch Strke,2014,66(7−8):595−605. doi: 10.1002/star.201300201 [12] 陆学中, 曾凡莲, 张德榜, 等. 湿法提取玉米淀粉的工艺优化[J]. 粮食与饲料工业,2017(11):37−42. [13] 杨超, 南楠, 付晓燕, 等. 自然发酵对阴米淀粉物化性质的影响[J]. 食品科学,2011,32(11):129−136. [14] 杨滨梦, 肖志刚, 黄丹, 等. 猴头菇多糖挤压膨化预处理提取工艺优化[J]. 食品研究与开发,2020,41(11):78−83. [15] 王萍萍. 基于疏水性生物活性因子新型糊精超分子体系的构筑及其性质研究[D]. 广州: 华南理工大学, 2018. [16] 张本山, 刘培玲. 几种淀粉颗粒的结构与形貌特征[J]. 华南理工大学学报(自然科学版),2005,33(6):68−73. [17] Liu Y, Chen J, Luo S, et al. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology[J]. Carbohydrate Polymers,2017,175:265−272. doi: 10.1016/j.carbpol.2017.07.084 [18] Yan Xiang, Wu Zheng-Zong, Li Ming-Yang, et al. The combined effects of extrusion and heat-moisture treatment on the physicochemical properties and digestibility of corn starch[J]. International Journal of Biological Macromolecules, 2019, 134: 1108−1112. [19] 王丽爽, 肖志刚, 郭世龙, 等. 挤压膨化联合蒸煮技术制备富硒杂粮粉[J]. 食品工业,2019,40(11):129−133. [20] Laura R, Manuel G, Hamaker B R, et al. Shear scission through extrusion diminishes inter-molecular interactions of starch molecules during storage[J]. Journal of Food Engineering,2018,238:134−140. doi: 10.1016/j.jfoodeng.2018.06.019 [21] Xie F, Halley P J, Avérous L. Rheology to understand and optimize processibility, structures and properties of starch polymeric materials[J]. Progress in Polymer Science,2011,37(4):595−623. [22] Liu Wei-Chen, Halley Peter, Gilbert Robert G. Mechanism of degradation of starch, a highly branched polymer, during extrusion[J]. American Chemical Society,2010(6):2855−2864. [23] Pdrez O E , Haros M , Suarez C. Corn steeping: Influence of time and lactic acid on isolation and thermal properties of starch[J]. Journal of Food Engineering,2001,48(3):251−256. doi: 10.1016/S0260-8774(00)00165-5 [24] Montgomery D C. 实验设计与分析[M]. 6版. 北京: 人民邮电出版社, 2007: 405−462. [25] Bazolli R S, Vasconcellos R S, de-Oliveira L D, et al. Effect of the particle size of maize, rice, and sorghum in extruded diets for dogs on starch gelatinization, digestibility, and the fecal concentration of fermentation products[J]. Journal of Animal Science,2015,93(6):2956−2966. doi: 10.2527/jas.2014-8409 [26] 马成业, 范玉艳, 于双双, 等. 挤压剪切活化对添加耐高温α-淀粉酶脱胚玉米淀粉结构和理化特性的影响[J]. 食品科学,2018,39(15):31−37. doi: 10.7506/spkx1002-6630-201815005 [27] Li X N, Wang C, Lu F, et al. Properties of corn starch isolated by acid liquid and l-cysteine[J]. Food Hydrocolloids,2015(44):353−359. [28] 刘宇欣. 挤压-复合酶法制备多孔淀粉研究[D]. 哈尔滨: 东北农业大学, 2013. -