Moisture Transformation and Quality Analysis of Star anise During Hot Air Drying
-
摘要: 为了探究八角的干燥特性及内部水分扩散机理,本研究以热风温度(50、60和70 ℃)和预处理方式(杀青和不杀青)为实验变量,对八角进行了热风干燥实验,同时进行低场核磁共振检测和品质分析。结果表明,八角干燥过程基本处于降速干燥阶段,且干燥时间与热风温度呈负相关关系,杀青处理可以降低干燥时间。经低场核磁共振T2谱检测,发现新鲜八角含有3个波峰,经干燥加工处理,不易流动水峰会分离出来1~2种波峰,这部分增加的波峰为大分子有机物。通过对八角干燥过程中的各峰面积和各组分占比进行研究,发现干燥加工主要除去的水分为不易流动水,而结合水、大分子有机物和小分子有机物的质量变化很小。杀青预处理对干燥过程八角的波峰分布影响甚微,但增加了八角的干燥速率。通过对八角品质的分析可以得到:经杀青预处理,干燥后的八角色泽更好,复水能力更强,但皱缩率更大,且热风温度越高,八角的复水能力越大,但会导致皱缩率也增大。Abstract: To explore the drying characteristics and the moisture diffusion mechanism in drying process of the Star anise, the hot-air experiment and low-field nuclear magnetic resonance (LF-NMR) of the Star anise were carried out and the quality of dryed Star anise were analyzed, where the experimental variables were drying temperature (50, 60 and 70 ℃) and pretreatment ( blanching ).The results showed that the drying process was basically in the falling rate period. The drying time was negatively correlated with the drying temperature of the hot air, and the blanching process could reduce the drying time.Three peaks were found in the fresh Star anise through low-field nuclear magnetic resonance.Through the drying process, it was found that 1~2 kinds of peaks could be separated from the water peak which was not easy to flow, and those were macromolecular organic matter. According to the area of each peak and the proportion of each component, most of the water removed from the Star anise in the drying process was non-flowing water, and there was a small change in the mass of the bound water, macromolecular organic matter and small molecule organic matter changed little. The pretreatment had little effects on the peak distribution of Star anise during the drying process, but the drying speed could be shortened. The quality of Star anise was showed that the dried Star anise was brighter in color, stronger in the rehydration rate, but greater in shrinkage rate after blanching. And the higher the hot air temperature was, the higher rehydration rate but higher shrinkage rate the dried Star anise had.
-
Key words:
- Star anise /
- hot air drying /
- blanching /
- low-field nuclear magnetic resonance (LF-NMR) /
- quality
-
表 1 八角干燥品质测定结果
Table 1. The quality measurement of dried Anise anise
样品 色差 干燥结束八角瓣色度 皱缩率${{\rm{S}}}_{{\rm{R}}}\left(\text{%}\right)$ 复水比${{\rm{R}}}_{{\rm{R}}}$ ∆L ∆a ∆b ∆E L a b 杀青+50 ℃干燥 20.02±1.68 12.57±2.79 9.18±1.74 25.87±0.77 11.72±1.09 5.12±1.48 16.75±2.11 63.89±0.51 1.56±0.05 杀青+60 ℃干燥 20.03±3.28 16.11±4.42 7.49±1.45 27.91±1.07 14.62±1.26 7.61±1.17 21.16±1.44 66.67±0.61 1.66±0.02 杀青+70 ℃干燥 21.70±0.56 13.49±2.53 4.56±2.73 26.41±1.43 14.88±0.98 5.01±1.21 26.01±2.7 67.78±0.74 1.95±0.02 未杀青+50 ℃干燥 19.80±2.15 14.03±5.25 10.89±1.45 27.40±3.55 14.47±0.58 4.52±1.03 14.38±1.41 44.44±1.97 1.16±0.12 未杀青+60 ℃干燥 25.67±2.35 13.07±1.75 9.40±1.05 30.54±2.40 10.26±1.18 8.35±1.17 16.48±2.61 53.13±1.91 1.18±0.02 未杀青+70 ℃干燥 26.96±1.31 11.55±2.86 4.46±3.04 30.16±2.09 10.67±0.98 4.68±1.09 23.57±4.04 58.82±0.33 1.34±0.04 市面上的八角 − − − − 20.76±4.81 25.62±2.54 30.75±3.93 − 1.78±0.06 -
[1] 熊燕子, 龚正礼. 八角茴香的研究进展[J]. 中国调味品,2008,33(9):28−30. doi: 10.3969/j.issn.1000-9973.2008.09.003 [2] 连锦花, 孙果宋. 八角的研究进展[J]. 化工技术与开发,2010,39(3):31−33. doi: 10.3969/j.issn.1671-9905.2010.03.009 [3] 文雅欣. 远红外辐照-热风干燥八角的动力学及品质变化研究[D]. 广州: 华南理工大学, 2019: 4−77. [4] 李琳, 王桢. 果蔬干燥技术研究进展[J]. 中国果菜,2020,40(3):9−17. [5] Fangfang Xu, Xin Jin, Lu Zhang, et al. Investigation on water status and distribution in broccoli and the effects of drying on water status using NMR and MRI methods[J]. Food Research International,2017,96(JUN):191−197. [6] 孙炳新, 赵宏侠, 冯叙桥, 等. 基于低场核磁和成像技术的鲜枣贮藏过程水分状态的变化研究[J]. 中国食品学报,2016,16(5):252−257. [7] Pamela F Faure, Sabine Care, Julie Magat, et al. Drying effect on cement paste porosity at early age observed by NMR methods[J]. Construction and Building Materials,2012,29(4):496−503. [8] 李娜, 李瑜. 利用低场核磁共振技术分析冬瓜真空干燥过程中的内部水分变化[J]. 食品科学,2016,37(23):84−88. doi: 10.7506/spkx1002-6630-201623014 [9] 李梁, 程秀峰, 杨尚雄, 等. 基于低场核磁共振的热风干燥猕猴桃切片含水率预测模型[J]. 农业工程学报,2020,36(10):252−260. doi: 10.11975/j.issn.1002-6819.2020.10.031 [10] 任永申, 郑尧, 雷蕾, 等. 低场核磁共振及成像技术分析天花粉干燥过程中水分变化规律[J]. 中南民族大学学报(自然科学版),2019,38(3):415−419. [11] 朱文学. 中药材干燥原理与技术[M]. 化学工业出版社: 北京, 2007: 145−146. [12] 彭程, 胡长利. 八角茴香的加工及开发利用[J]. 农业工程技术(农产品加工),2007(6):39−43. [13] 陈路, 吴献娟, 潘富林, 等. 八角茴香产地加工方法的对比研究[J]. 现代中药研究与实践,2019,33(1):1−5. [14] 段续, 刘文超, 任广跃, 等. 双孢菇微波冷冻干燥特性及干燥品质[J]. 农业工程学报,2016,32(12):295−302. doi: 10.11975/j.issn.1002-6819.2016.12.042 [15] Chua K J, Mujumdar A S, Chou S K, et al. Convectivedryingofbananaguava and potato pieces: Effect of cyclical variations of air temperature on drying kinetics and color change[J]. Drying Technology,2000,18(4−5):907−936. doi: 10.1080/07373930008917744 [16] 段振华, 蒋李娜, 郑元平, 等. 罗非鱼片的热风微波复合干燥特性[J]. 食品科学,2008(9):203−206. doi: 10.3321/j.issn:1002-6630.2008.09.042 [17] Song X, Hu H, Zhang B. Drying characteristics of Chinese Yam (Dioscorea opposita Thunb.) by far-infrared radiation and heat pump[J]. Journal of the Saudi Society of Agricultural ences,2018,17(3):290−296. doi: 10.1016/j.jssas.2016.05.008 [18] 许丛丛. 胡萝卜冷、热加工后力学性能变化及与水状态关系的研究[D]. 上海: 上海交通大学, 2015. [19] Hii C L , Law C L , Law M C. Simulation of heat and mass transfer of cocoa beans under stepwise drying conditions in a heat pump dryer[J]. Applied Thermal Energy,2013,54(1):264−271. doi: 10.1016/j.applthermaleng.2013.02.010 [20] Cüneyt Tunckal, İbrahim Doymaz. Performance analysis and mathematical modelling of banana slices in a heat pump drying system[J]. Renewable Energy,2020,150:918−923. doi: 10.1016/j.renene.2020.01.040 [21] 李湘利, 刘静, 朱乐乐, 等. 热风、微波及其联合干燥对蒜片品质的影响[J]. 食品工业科技,2018,39(15):136−140. [22] 麦馨允, 曾维标, 吴健. 白玉菇热风干燥工艺优化及其对品质的影响[J]. 中国食用菌,2019,38(7):71−78. [23] Xiao-Hui G, Chun-Yan X, Yu-Rong T, et al. Mathematical modeling and effect of various hot-air drying on mushroom(Lentinus edodes)[J]. Journal of Integrative Agriculture,2014,13(1):207−216. doi: 10.1016/S2095-3119(13)60265-8 [24] 宣艳, 孙旭, 向义龙, 等. 低场核磁共振技术对香樟种子水分变化的研究[J]. 江苏林业科技,2018,45(6):8−11, 15. doi: 10.3969/j.issn.1001-7380.2018.06.002 [25] 李东, 谭书明, 陈昌勇, 等. LF-NMR对稻谷干燥过程中水分状态变化的研究[J]. 中国粮油学报,2016,31(7):1−5. doi: 10.3969/j.issn.1003-0174.2016.07.001 [26] 李定金, 段振华, 刘艳, 等. 利用低场核磁共振技术研究调味山药片真空微波干燥过程中水分的变化规律[J]. 食品科学,2019,40(5):116−123. doi: 10.7506/spkx1002-6630-20171123-289 [27] Eungyu Kang, Hae Ri Park, Jeongbin Yoon, et al. A simple method to determine the water content in organic solvents using the 1H NMR chemical shifts differences between water and solvent[J]. Microchemical Journal,2018,138:395−400. doi: 10.1016/j.microc.2018.01.034 [28] 渠琛玲, 汪紫薇, 王雪珂, 等. 基于低场核磁共振的热风干燥过程花生仁含水率预测模型[J]. 农业工程学报,2019,35(12):290−296. doi: 10.11975/j.issn.1002-6819.2019.12.035 -