• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

超声辅助硫酸水解法制备银杏果壳纳米纤维素及其特性表征

薛刚 何易 李小白 章智 张有做 许光治

薛刚,何易,李小白,等. 超声辅助硫酸水解法制备银杏果壳纳米纤维素及其特性表征[J]. 食品工业科技,2021,42(14):204−211. doi:  10.13386/j.issn1002-0306.2020120006
引用本文: 薛刚,何易,李小白,等. 超声辅助硫酸水解法制备银杏果壳纳米纤维素及其特性表征[J]. 食品工业科技,2021,42(14):204−211. doi:  10.13386/j.issn1002-0306.2020120006
XUE Gang, HE Yi, LI Xiaobai, et al. Ultrasound-assisted Sulfuric Acid Hydrolysis Method for Preparation and Characterization of Nanocellulose from Ginkgo Nut Shell[J]. Science and Technology of Food Industry, 2021, 42(14): 204−211. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120006
Citation: XUE Gang, HE Yi, LI Xiaobai, et al. Ultrasound-assisted Sulfuric Acid Hydrolysis Method for Preparation and Characterization of Nanocellulose from Ginkgo Nut Shell [J]. Science and Technology of Food Industry, 2021, 42(14): 204−211. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120006

超声辅助硫酸水解法制备银杏果壳纳米纤维素及其特性表征

doi: 10.13386/j.issn1002-0306.2020120006
基金项目: 浙江省林业厅省院合作(2014SY06)
详细信息
    作者简介:

    薛刚(1995−),男,硕士研究生,研究方向:农林特产、粮油食品加工,E-mail:729689893@qq.com

    通讯作者:

    许光治(1977−),男,博士,副教授,研究方向:微生物与食品发酵,E-mail:guangzhi@zafu.edu.cn

  • 中图分类号: TS255.1

Ultrasound-assisted Sulfuric Acid Hydrolysis Method for Preparation and Characterization of Nanocellulose from Ginkgo Nut Shell

  • 摘要: 为充分利用银杏的工业生产副产物,以银杏果壳为原料,采用超声辅助硫酸水解法制备银杏果壳纳米纤维素(nanocrystalline cellulose isolated from ginkgo nut shell,NCC-GNS)。通过单因素实验研究了硫酸质量分数、反应温度和反应时间3个因素对NCC-GNS得率的影响,并应用正交试验进行优化,获得NCC-GNS的最佳制备条件。以常规硫酸水解法(未加超声辅助)制备的纳米纤维素(nanocrystalline cellulose,NCC)为对照,通过扫描电镜(scanning electron microscopy,SEM)、透射电镜(transmission electron microscopy,TEM)、Zeta电位和动态光散射(dynamic light scattering,DLS)、X-射线衍射(x-ray diffraction,XRD)、傅里叶变换红外光谱(fourier transform infrared spectroscopy,FT-IR)、热重(thermogravimetric analysis,TGA)等分析超声辅助处理对NCC-GNS的影响。结果表明:超声功率120 W时,制备NCC-GNS的最佳条件为硫酸质量分数48%、反应温度60 ℃、反应时间25 min,最优条件下NCC-GNS得率为37.01%;超声辅助和常规硫酸水解法制备的NCC-GNS均为长棒型,尺寸无明显差异,超声辅助制备的NCC-GNS长度和直径的分布范围相对集中,长度80~180 nm、直径3.5~5.5 nm;超声辅助制备的NCC-GNS结晶度为88%,高于常规硫酸水解的75%;两种方法制备的NCC-GNS均具有较低的Zeta电位和有良好的热稳定性。综上,超声辅助硫酸水解法制备的NCC-GNS得率较高,获得的NCC-GNS结晶度高、热稳定性好,在生物质复合材料领域表现出良好的应用前景。
  • 图  1  硫酸质量分数对NCC-GNS得率的影响

    Figure  1.  Effect of sulfuric acid mass fraction on NCC-GNS yield

    图  2  反应温度对NCC-GNS得率的影响

    Figure  2.  Effect of reaction temperature on NCC-GNS yield

    图  3  反应时间对NCC-GNS得率的影响

    Figure  3.  Effect of reaction time on NCC-GNS yield

    图  4  NCC-GNS和NCC的扫描电镜

    Figure  4.  SEM of NCC-GNS and NCC

    图  5  NCC-GNS和NCC的透射电镜

    Figure  5.  TEM of NCC-GNS and NCC

    图  6  NCC-GNS-Y和NCC-GNS-N长度和直径分布图

    Figure  6.  Distribution of length and diameter of NCC-GNS and NCC

    图  7  银杏果壳、银杏果壳纤维素和NCC-GNS XRD图

    Figure  7.  X-ray diffraction of ginkgo biloba shell, ginkgo biloba shell cellulose and NCC-GNS

    注:a~d分别代表银杏果壳、银杏果壳纤维素、NCC、NCC-GNS;图8~图9同。

    图  8  银杏果壳、银杏果壳纤维素和NCC-GNS红外光谱图

    Figure  8.  FT-IR spectrum of ginkgo biloba shell, ginkgo biloba shell cellulose and NCC-GNS

    图  9  银杏果壳、银杏果壳纤维素和NCC-GNS TG、DTG图

    Figure  9.  TG and DTG curves of ginkgo biloba shell, ginkgo biloba shell cellulose and NCC-GNS

    表  1  正交试验因素水平表

    Table  1.   Factors and levels of orthogonal experiment

    水平因素
    A硫酸质量分数(%)B反应温度(℃)C反应时间(min)
    1465520
    2486025
    3506530
    下载: 导出CSV

    表  2  银杏果壳和银杏果壳纤维素化学成分

    Table  2.   Chemical composition of GNS and CPC-GNS

    成分银杏果壳银杏果壳纤维素
    纤维素(wt%)36.26±1.0383.22±1.18
    木质素(wt%)52.12±0.895.05±0.81
    半纤维素(wt%)4.52±0.910.53±0.17
    下载: 导出CSV

    表  3  正交试验结果及直观分析

    Table  3.   Orthogonal test results and visual analysis

    实验号A硫酸质量分数(%)B反应温度(℃)C反应时间(min)空白列得率(%)
    1465520110.48
    2466025216.29
    3466530311.7
    4486525129.15
    5485530232.10
    6486020331.37
    7506030130.11
    8506520221.77
    9505525329.10
    K112.8223.8921.2123.25
    K230.8725.9224.8523.39
    K326.9920.8724.6424.06
    R18.055.053.640.81
    下载: 导出CSV

    表  4  方差分析表

    Table  4.   Variance analysis table

    因素Ⅲ类平方和自由度F显著性
    A541.6462481.634*
    B38.744234.451*
    C25.059222.282*
    误差1.1252
    注:*代表差异性显著;给定显著水平α=0.05,F0.05 (2,2)=19.0,P<0.05。
    下载: 导出CSV

    表  5  Zeta电位和DLS

    Table  5.   Zeta potential and DLS

    Zeta电位(mV)DLS(nm)
    NCC-GNS−39.6±1.5105.7±5.2
    NCC−35.3±3.6110.3±4.6
    下载: 导出CSV

    表  6  综合热分析结果

    Table  6.   Result of comprehensive thermal analysis

    样品第一阶段 第二阶段 第三阶段600 ℃时的残余率(%)
    起始温度(℃)最大失重时的降解温(℃)起始温度(℃)最大失重时的降解温(℃)起始温度(℃)最大失重时的降解温(℃)
    银杏果壳3096 178357 38643825.65
    银杏果壳纤维素308917933135241820.90
    NCC307117830933235124.35
    NCC-GNS308117725427435324.38
    下载: 导出CSV
  • [1] Costa L A, Fonseca A F, Pereira F V, et al. Extraction and characterization of cellulose nanocrystals from corn stover[J]. Cellulose Chemistry Technology,2015,49(2):127−133.
    [2] Rosa M F, Medeiros E S, Maimonge J A, et al. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior[J]. Carbohydrate Polymers,2010,81(1):83−92. doi:  10.1016/j.carbpol.2010.01.059
    [3] Lou Zaixiang, Wang Hongxin, Li Jing, et al. Effect of simultaneous ultrasonic/microwave assisted extraction on the antioxidant and antibacterial activities of burdock leaves[J]. Journal of Medicinal Plants Research,2011,5(22):5370−5377.
    [4] Saha M, Eskicioglu C, Marin J. Microwave ultrasonic and chemo-mechanical pretreatments for enhancing methne potential of pulp mill wastewater treatment sludge[J]. Bioresource Technology,2011,102(17):7815−1826. doi:  10.1016/j.biortech.2011.06.053
    [5] Kolakovic R, Peltonen L, Laukkanen A, et al. Nanofibrillar cellulose films for controlled drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,2012,82(2):308−315. doi:  10.1016/j.ejpb.2012.06.011
    [6] Thennakoon M Udeni Gunathilake, Yern Chee Ching, Cheng Hock Chuah. Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel[J]. Polymers,2017,9(2):64.
    [7] 郭婷, 刘雄. 纳米纤维素的改性及其在复合材料中的应用进展[J]. 食品科学,2014,35(3):285−289. doi:  10.7506/spkx1002-6630-201403056
    [8] 张秀伶, 王稳航. 纳米纤维素研究及在食品工业中的应用前景[J]. 食品工业科技, 2016, 37(21): 377−382.
    [9] Wilson Pires Flauzino Neto, Hudson Alves Silvério, Noélio Oliveira Dantas, et al. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-Soy hulls[J]. Industrial Crops and Products,2013,42:480−488. doi:  10.1016/j.indcrop.2012.06.041
    [10] Saleheen Bano, Yuvraj Singh Negi. Studies on cellulose nanocrystals isolated from groundnut shells[J]. Carbohydrate Polymers,2017,157:1041−1049. doi:  10.1016/j.carbpol.2016.10.069
    [11] Josh Marett, Alex Aning E, Johan Foster. The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis[J]. Industrial Crops & Products,2017,109:869−874.
    [12] 刘潇, 董海洲, 侯汉学. 花生壳纳米纤维素的制备及其对淀粉膜性能的影响[J]. 中国粮油学报,2015,30(1):112−116.
    [13] 陈珊珊, 陶宏江, 王亚静, 等. 葵花籽壳纳米纤维素制备工艺优化及其表征[J]. 农业工程学报,2015,31(15):302−308. doi:  10.11975/j.issn.1002-6819.2015.15.041
    [14] 宋孝周, 吴清林, 傅峰, 等. 农作物与其剩余物制备纳米纤维素研究进展[J]. 农业机械学报,2011,42(11):106−112.
    [15] Yang Ni, Li Jinwei, Fan Liuping. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions[J]. International Journal of Biological Macromolecules,2020,149:617−626. doi:  10.1016/j.ijbiomac.2020.01.263
    [16] Mehdi Jonoobi, Reza Oladi, Yalda Davoudpour, et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review[J]. Cellulose,2015,22(2):935−969. doi:  10.1007/s10570-015-0551-0
    [17] Yang Ni, Fan Liuping, Yong Sun. Interfacial properties of cellulose nanoparticles with different lengths from ginkgo seed shells[J]. Food Hydrocolloids,2020,109:106−121.
    [18] 李华, 孔新刚, 王俊. 秸秆饲料中纤维素、半纤维素和木质素的定量分析研究[J]. 新疆农业大学学报,2007(3):65−68. doi:  10.3969/j.issn.1007-8614.2007.03.015
    [19] Alfred D French, Michael Santiago Cintrón. Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index[J]. Cellulose,2013,20(1):583−588. doi:  10.1007/s10570-012-9833-y
    [20] Chen Wenshuai, Yu Haipeng, Liu Yixing, et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments[J]. Carbohydrate Polymers,2010,83(4):1804−1811.
    [21] Liu Haiyun, Liu Dagang, Yao Fei, et al. Fabrication and properties of transparent polymethy/methacrylate/cellulose nanocrystals composites[J]. Bioresource Technology,2010,101(14):5685−5692. doi:  10.1016/j.biortech.2010.02.045
    [22] Roni Marcos Dos Santos, Wilson Pires Flauzino Neto, Hudson Alves Silvério, et al. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste[J]. Industrial Crops and Products,2013,50:707−714. doi:  10.1016/j.indcrop.2013.08.049
    [23] Hanieh Kargarzadeh, Ishak Ahmad, Ibrahim Abdullah, et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers[J]. Cellulose,2012,19(3):855−866. doi:  10.1007/s10570-012-9684-6
    [24] 陆红佳, 文红丽, 刘雄. 超声波辅助酸法制备纳米薯渣纤维素的工艺研究[J]. 中国粮油学报,2012,27(4):96−100. doi:  10.3969/j.issn.1003-0174.2012.04.020
    [25] Ping Lu, You-Lo Hsieh. Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins[J]. Carbohydrate Polymers,2012,87(4):2546−2553. doi:  10.1016/j.carbpol.2011.11.023
    [26] Ping Lu, You-Lo Hsieh. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network[J]. Carbohydrate Polymers,2010,82(2):329−336. doi:  10.1016/j.carbpol.2010.04.073
    [27] Araki J, Wada M, Kuga S, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1998,142(1):75−82.
    [28] Eliangela Morais Teixeira, Ana Carolina Corrêa, Alexandra Manzoli, et al. Cellulose nanofibers from white and naturally colored cotton fibers[J]. Cellulose,2010,17(3):595−606. doi:  10.1007/s10570-010-9403-0
    [29] George Johnsy, Ramana K V, Bawa A S, et al. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites[J]. International Journal of Biological Macromolecules,2011,48(1):50−57. doi:  10.1016/j.ijbiomac.2010.09.013
    [30] Agustin M B, Nakatsubo F, Yano H. The thermal stability of nanocellulose and its acetates with different degree of polymerization[J]. Cellulose,2016,23(1):451−464. doi:  10.1007/s10570-015-0813-x
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  163
  • HTML全文浏览量:  57
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 网络出版日期:  2021-06-05
  • 刊出日期:  2021-07-07

目录

    /

    返回文章
    返回

    重要通知

    期待您的加入:《食品工业科技》2023年春招市场专员