Ultrasound-assisted Sulfuric Acid Hydrolysis Method for Preparation and Characterization of Nanocellulose from Ginkgo Nut Shell
-
摘要: 为充分利用银杏的工业生产副产物,以银杏果壳为原料,采用超声辅助硫酸水解法制备银杏果壳纳米纤维素(nanocrystalline cellulose isolated from ginkgo nut shell,NCC-GNS)。通过单因素实验研究了硫酸质量分数、反应温度和反应时间3个因素对NCC-GNS得率的影响,并应用正交试验进行优化,获得NCC-GNS的最佳制备条件。以常规硫酸水解法(未加超声辅助)制备的纳米纤维素(nanocrystalline cellulose,NCC)为对照,通过扫描电镜(scanning electron microscopy,SEM)、透射电镜(transmission electron microscopy,TEM)、Zeta电位和动态光散射(dynamic light scattering,DLS)、X-射线衍射(x-ray diffraction,XRD)、傅里叶变换红外光谱(fourier transform infrared spectroscopy,FT-IR)、热重(thermogravimetric analysis,TGA)等分析超声辅助处理对NCC-GNS的影响。结果表明:超声功率120 W时,制备NCC-GNS的最佳条件为硫酸质量分数48%、反应温度60 ℃、反应时间25 min,最优条件下NCC-GNS得率为37.01%;超声辅助和常规硫酸水解法制备的NCC-GNS均为长棒型,尺寸无明显差异,超声辅助制备的NCC-GNS长度和直径的分布范围相对集中,长度80~180 nm、直径3.5~5.5 nm;超声辅助制备的NCC-GNS结晶度为88%,高于常规硫酸水解的75%;两种方法制备的NCC-GNS均具有较低的Zeta电位和有良好的热稳定性。综上,超声辅助硫酸水解法制备的NCC-GNS得率较高,获得的NCC-GNS结晶度高、热稳定性好,在生物质复合材料领域表现出良好的应用前景。Abstract: In order to make full use of the by-products of industrial production of ginkgo, this study used ginkgo nut shell as raw materials and adopt ultrasonic-assisted sulfuric acid hydrolysis to prepare ginkgo nut shell nanocrystalline cellulose (nanocrystalline cellulose isolated from ginkgo nut shell, NCC-GNS). The effects of three factors (e.g. sulfuric acid mass fraction, reaction temperature, reaction time) on nanocellulose yield were investigated by single-factor tests, and orthogonal experiments were used to optimize them to obtain the best preparation conditions for NCC-GNS. Taking nanocrystalline cellulose (nanocrystalline cellulose, NCC) prepared by conventional sulfuric acid hydrolysis (without ultrasound assistance) as a control, analyzed the impact of ultrasound-assisted processing on NCC-GNS through scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and dynamic light scattering (DLS), X-ray diffraction (x-ray diffraction, XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), etc. The results showed that the optimal conditions for preparing NCC-GNS were sulfuric acid mass fraction of 48%, reaction temperature of 60 °C, reaction time of 25 min under the condition of ultrasonic power of 120 W. The NCC-GNS yield under optimal conditions was 37.01%. The NCC-GNS prepared by ultrasonic-assisted and conventional sulfuric acid hydrolysis methods were long rods with no significant difference in size. The length and diameter of the NCC-GNS prepared by ultrasonic-assisted were relatively concentrated with a length of 80~180 nm and a diameter of 3.5~5.5 nm. The crystallinity of NCC-GNS prepared by ultrasound was 88%, which was higher than 75% of conventional sulfuric acid hydrolysis. The NCC-GNS prepared by the two methods had lower Zeta potential and good thermal stability. In summary, the yield of NCC-GNS prepared by ultrasonic-assisted sulfuric acid hydrolysis was high, and the obtained NCC-GNS had high crystallinity and good thermal stability, which was expected to have better applications in the field of biomass composite materials.
-
Key words:
- optimization /
- ginkgo nut shell /
- nanocrystalline cellulose /
- ultrasound-assisted /
- preparation /
- characterization
-
表 1 正交试验因素水平表
Table 1. Factors and levels of orthogonal experiment
水平 因素 A硫酸质量分数(%) B反应温度(℃) C反应时间(min) 1 46 55 20 2 48 60 25 3 50 65 30 表 2 银杏果壳和银杏果壳纤维素化学成分
Table 2. Chemical composition of GNS and CPC-GNS
成分 银杏果壳 银杏果壳纤维素 纤维素(wt%) 36.26±1.03 83.22±1.18 木质素(wt%) 52.12±0.89 5.05±0.81 半纤维素(wt%) 4.52±0.91 0.53±0.17 表 3 正交试验结果及直观分析
Table 3. Orthogonal test results and visual analysis
实验号 A硫酸质量分数(%) B反应温度(℃) C反应时间(min) 空白列 得率(%) 1 46 55 20 1 10.48 2 46 60 25 2 16.29 3 46 65 30 3 11.7 4 48 65 25 1 29.15 5 48 55 30 2 32.10 6 48 60 20 3 31.37 7 50 60 30 1 30.11 8 50 65 20 2 21.77 9 50 55 25 3 29.10 K1 12.82 23.89 21.21 23.25 K2 30.87 25.92 24.85 23.39 K3 26.99 20.87 24.64 24.06 R 18.05 5.05 3.64 0.81 表 4 方差分析表
Table 4. Variance analysis table
因素 Ⅲ类平方和 自由度 F值 显著性 A 541.646 2 481.634 * B 38.744 2 34.451 * C 25.059 2 22.282 * 误差 1.125 2 注:*代表差异性显著;给定显著水平α=0.05,F0.05 (2,2)=19.0,P<0.05。 表 5 Zeta电位和DLS
Table 5. Zeta potential and DLS
Zeta电位(mV) DLS(nm) NCC-GNS −39.6±1.5 105.7±5.2 NCC −35.3±3.6 110.3±4.6 表 6 综合热分析结果
Table 6. Result of comprehensive thermal analysis
样品 第一阶段 第二阶段 第三阶段 600 ℃时的残余率(%) 起始温度(℃) 最大失重时的降解温(℃) 起始温度(℃) 最大失重时的降解温(℃) 起始温度(℃) 最大失重时的降解温(℃) 银杏果壳 30 96 178 357 386 438 25.65 银杏果壳纤维素 30 89 179 331 352 418 20.90 NCC 30 71 178 309 332 351 24.35 NCC-GNS 30 81 177 254 274 353 24.38 -
[1] Costa L A, Fonseca A F, Pereira F V, et al. Extraction and characterization of cellulose nanocrystals from corn stover[J]. Cellulose Chemistry Technology,2015,49(2):127−133. [2] Rosa M F, Medeiros E S, Maimonge J A, et al. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior[J]. Carbohydrate Polymers,2010,81(1):83−92. doi: 10.1016/j.carbpol.2010.01.059 [3] Lou Zaixiang, Wang Hongxin, Li Jing, et al. Effect of simultaneous ultrasonic/microwave assisted extraction on the antioxidant and antibacterial activities of burdock leaves[J]. Journal of Medicinal Plants Research,2011,5(22):5370−5377. [4] Saha M, Eskicioglu C, Marin J. Microwave ultrasonic and chemo-mechanical pretreatments for enhancing methne potential of pulp mill wastewater treatment sludge[J]. Bioresource Technology,2011,102(17):7815−1826. doi: 10.1016/j.biortech.2011.06.053 [5] Kolakovic R, Peltonen L, Laukkanen A, et al. Nanofibrillar cellulose films for controlled drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics,2012,82(2):308−315. doi: 10.1016/j.ejpb.2012.06.011 [6] Thennakoon M Udeni Gunathilake, Yern Chee Ching, Cheng Hock Chuah. Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel[J]. Polymers,2017,9(2):64. [7] 郭婷, 刘雄. 纳米纤维素的改性及其在复合材料中的应用进展[J]. 食品科学,2014,35(3):285−289. doi: 10.7506/spkx1002-6630-201403056 [8] 张秀伶, 王稳航. 纳米纤维素研究及在食品工业中的应用前景[J]. 食品工业科技, 2016, 37(21): 377−382. [9] Wilson Pires Flauzino Neto, Hudson Alves Silvério, Noélio Oliveira Dantas, et al. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-Soy hulls[J]. Industrial Crops and Products,2013,42:480−488. doi: 10.1016/j.indcrop.2012.06.041 [10] Saleheen Bano, Yuvraj Singh Negi. Studies on cellulose nanocrystals isolated from groundnut shells[J]. Carbohydrate Polymers,2017,157:1041−1049. doi: 10.1016/j.carbpol.2016.10.069 [11] Josh Marett, Alex Aning E, Johan Foster. The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis[J]. Industrial Crops & Products,2017,109:869−874. [12] 刘潇, 董海洲, 侯汉学. 花生壳纳米纤维素的制备及其对淀粉膜性能的影响[J]. 中国粮油学报,2015,30(1):112−116. [13] 陈珊珊, 陶宏江, 王亚静, 等. 葵花籽壳纳米纤维素制备工艺优化及其表征[J]. 农业工程学报,2015,31(15):302−308. doi: 10.11975/j.issn.1002-6819.2015.15.041 [14] 宋孝周, 吴清林, 傅峰, 等. 农作物与其剩余物制备纳米纤维素研究进展[J]. 农业机械学报,2011,42(11):106−112. [15] Yang Ni, Li Jinwei, Fan Liuping. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions[J]. International Journal of Biological Macromolecules,2020,149:617−626. doi: 10.1016/j.ijbiomac.2020.01.263 [16] Mehdi Jonoobi, Reza Oladi, Yalda Davoudpour, et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review[J]. Cellulose,2015,22(2):935−969. doi: 10.1007/s10570-015-0551-0 [17] Yang Ni, Fan Liuping, Yong Sun. Interfacial properties of cellulose nanoparticles with different lengths from ginkgo seed shells[J]. Food Hydrocolloids,2020,109:106−121. [18] 李华, 孔新刚, 王俊. 秸秆饲料中纤维素、半纤维素和木质素的定量分析研究[J]. 新疆农业大学学报,2007(3):65−68. doi: 10.3969/j.issn.1007-8614.2007.03.015 [19] Alfred D French, Michael Santiago Cintrón. Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index[J]. Cellulose,2013,20(1):583−588. doi: 10.1007/s10570-012-9833-y [20] Chen Wenshuai, Yu Haipeng, Liu Yixing, et al. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments[J]. Carbohydrate Polymers,2010,83(4):1804−1811. [21] Liu Haiyun, Liu Dagang, Yao Fei, et al. Fabrication and properties of transparent polymethy/methacrylate/cellulose nanocrystals composites[J]. Bioresource Technology,2010,101(14):5685−5692. doi: 10.1016/j.biortech.2010.02.045 [22] Roni Marcos Dos Santos, Wilson Pires Flauzino Neto, Hudson Alves Silvério, et al. Cellulose nanocrystals from pineapple leaf, a new approach for the reuse of this agro-waste[J]. Industrial Crops and Products,2013,50:707−714. doi: 10.1016/j.indcrop.2013.08.049 [23] Hanieh Kargarzadeh, Ishak Ahmad, Ibrahim Abdullah, et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers[J]. Cellulose,2012,19(3):855−866. doi: 10.1007/s10570-012-9684-6 [24] 陆红佳, 文红丽, 刘雄. 超声波辅助酸法制备纳米薯渣纤维素的工艺研究[J]. 中国粮油学报,2012,27(4):96−100. doi: 10.3969/j.issn.1003-0174.2012.04.020 [25] Ping Lu, You-Lo Hsieh. Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins[J]. Carbohydrate Polymers,2012,87(4):2546−2553. doi: 10.1016/j.carbpol.2011.11.023 [26] Ping Lu, You-Lo Hsieh. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network[J]. Carbohydrate Polymers,2010,82(2):329−336. doi: 10.1016/j.carbpol.2010.04.073 [27] Araki J, Wada M, Kuga S, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1998,142(1):75−82. [28] Eliangela Morais Teixeira, Ana Carolina Corrêa, Alexandra Manzoli, et al. Cellulose nanofibers from white and naturally colored cotton fibers[J]. Cellulose,2010,17(3):595−606. doi: 10.1007/s10570-010-9403-0 [29] George Johnsy, Ramana K V, Bawa A S, et al. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites[J]. International Journal of Biological Macromolecules,2011,48(1):50−57. doi: 10.1016/j.ijbiomac.2010.09.013 [30] Agustin M B, Nakatsubo F, Yano H. The thermal stability of nanocellulose and its acetates with different degree of polymerization[J]. Cellulose,2016,23(1):451−464. doi: 10.1007/s10570-015-0813-x -