Study on Fungistasis of Marine Bacteria BMF04 and Removal Effect on Toxin
-
摘要: 为了明确海洋细菌BMF04菌株的抑菌作用和毒素去除作用及其降解毒素机理。采用平板对峙法测定BMF04菌株及无菌发酵液对小麦赤霉病菌(Fusarium graminearum)、小麦雪腐镰刀菌(Fusarium nivale (Fr) Ces.)的抑制作用;采用含毒平板法和HPLC法测定该菌株、无菌发酵液、细胞壁悬浮液、胞内液对玉米赤霉烯酮(ZEN)毒素的去除作用和高温以及蛋白酶处理对BMF04菌株去除ZEN毒素作用的影响,明确该菌株去除毒素的作用机理。结果表明,BMF04菌株及无菌发酵液对小麦赤霉病菌和小麦雪腐镰刀菌具有较强的抑菌作用;BMF04菌株对ZEN毒素具有较强的去除作用,当培养液中ZEN毒素浓度为15 µg/mL时,菌株活菌、无菌发酵液、细胞壁悬浮液和胞内液均对ZEN毒素具有较强的去除作用,去除率分别98.92%±0.07%、98.70%±0.19%、97.85%±0.07%和98.54%±0.10%,菌液在121 ℃条件下高温处理30 min,灭活菌液和灭活无菌发酵液对ZEN毒素的去除率明显下降,仅为60.32%±0.21%、2.09%±1.15%,胰蛋白酶、胃蛋白酶和蛋白酶K处理后,去除率分别下降到3.52%±0.77%、0.50%±0.39% 和0.18%±0.12%,说明高温灭活和蛋白酶对BMF04菌株发酵液去除ZEN毒素作用具有显著影响;菌株去除ZEN毒素既有胞外蛋白质降解作用也有细胞壁的吸附作用。研究结果为微生物去除污染粮食、饲料中的ZEN毒素提供了新的菌种资源。
-
关键词:
- 海洋细菌 /
- 玉米赤霉烯酮(ZEN) /
- 抑菌带宽度 /
- 去除率 /
- 生物降解
Abstract: In order to clarify the inhibitory effects, toxin removal capacity and toxin degradation mechanism of marine bacteria BMF04. Firstly, the inhibitory effects of BMF04 strain and its aseptic fermentation broth on Fusarium graminearum and Fusarium nivale (Fr) Ces. were determined by the plate-stand method; Secondly, the removal of ZEN by live strain, aseptic fermentation broth, cell wall suspension and intracellular fluid, as well as the effect of hightemperature and protease treatment on the removal of ZEN by BMF04 strain were determined by toxicity plate method and HPLC method, to clarify the mechanism of its action of removing toxin. The results showed that BMF04 had good inhibitory effect on F. graminearum and F. nivale (Fr) Ces.. The strain BMF04 strain had a strong ability to remove Zen toxin, and when the concentration was 15 µg/mL, the live strain, the aseptic fermentation liquid, the cell wall suspension and the intracellular liquid had strong removal effect on ZEN, the removal rates were 98.92%±0.07%, 98.70%±0.19%, 97.85%±0.07% and 98.54%±0.10%, respectively. After high temperature inactivation, the removal rate of ZEN was reduced to 60.32%±0.21% and 2.09%±1.15%. After treatment with trypsin, pepsin and proteinase K, the removal rates decreased to 3.52%±0.77%, 0.50%±0.39% and 0.18%± 0.12%, indicating that high temperature inactivation and protease had significant effects on the removal of ZEN from BMF04 fermentation broth. Therefore, the removal of ZEN by the strain had both the degradation of extracellular protein and the adsorption of cell wall. The results of this study provided a new strain resource for the biological removal of ZEN toxin from contaminated food and feed, and also provided a theoretical basis for the biodegradation of ZEN toxin.-
Key words:
- marine bacteria /
- zearalenone (ZEN) /
- inhibition zone width /
- degradation rate /
- biodegradation
-
表 1 BMF04菌株对不同浓度ZEN毒素的去除率
Table 1. Removal rate of BMF04 strain to different concentration of ZEN
ZEN初始浓度
(µg/mL)CK 处理 去除率(%) ZEN浓度(µg/mL) ZEN浓度(µg/mL) 4 3.89±0.07 0.00±0.00 100.00±0.00 10 9.88±0.06 0.00±0.00 100.00±0.00 15 14.91±0.30 0.14±0.01 98.95±1.27 表 2 不同处理BMF04菌株ZEN毒素的峰面积和浓度
Table 2. Peak area and concentration of ZEN by strain BMF04 with different treatments
处理 ZEN浓度(µg/mL) 去除率(%) CK 14.86±0.08a 0.00±0.00d 活菌菌悬液 0.16±0.01d 98.92±0.07a 灭活菌悬液 5.90±0.03b 60.32±0.21b 细胞壁悬液 0.32±0.01c 97.85±0.07a 胞内液 0.22±0.02c 98.54±0.10a 无菌发酵液 0.19±0.03cd 98.70±0.19a 灭活的无菌发酵液 14.55±0.17a 2.09±1.15c 注:不同字母表示差异显著(P<0.05),表3同。 表 3 不同蛋白酶处理BMF04菌株无菌发酵液后ZEN毒素的峰面积、浓度和去除率
Table 3. Peak area and concentration of ZEN culture medium after different protease treatment of aseptic fermentation broth
不同处理 ZEN浓度(µg/mL) 去除率(%) CK1 0.53±0.03c 86.54±0.72a CK2 3.97±0.02a 0.00±0.00c 胰蛋白酶 3.83±0.03b 3.52±0.77b 胃蛋白酶 3.95 ±0.02a 0.50±0.39c 蛋白酶K 3.96±0.00a 0.18±0.12c -
[1] 裴世春, 李妍, 高建伟, 等. 采收期谷物中真菌毒素产毒菌的筛选鉴定[J]. 食品科学,2018,39(10):312−317. doi: 10.7506/spkx1002-6630-201810047 [2] 周红姿, 周方园, 赵晓燕. 小麦赤霉病生防菌的筛选及其田间防效研究[J]. 中国农业科技导报,2020,22(1):67−77. [3] 史建荣, 刘馨, 仇剑波. 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展[J]. 中国农业科学,2014,47(18):3641−3654. doi: 10.3864/j.issn.0578-1752.2014.18.012 [4] 刘盼, 蔡俊, 廖兆民, 等. 降解玉米赤霉烯酮菌株的鉴定及其发酵条件优化[J]. 食品工业科技,2018,39(21):119−123. [5] 雷元培, 周建川, 王利通, 等. 2018年中国饲料原料及配合饲料中霉菌毒素污染调查报告[J]. 饲料工业,2020,41(10):60−64. [6] 陈心仪. 2009-2010年中国部分省市饲料原料及配合饲料的霉菌毒素污染概况[J]. 浙江畜牧兽医,2011,36(2):7−10. doi: 10.3969/j.issn.1005-7307.2011.02.005 [7] 周建川, 雷元培, 王利通, 等. 2017年中国饲料原料及配合饲料中霉菌毒素污染调查报告[J]. 饲料工业,2018,39(11):52−56. [8] 李安平, 朱连勤, 陈甫, 等. 2017年山东地区鸡饲料及原料中AFB-1、DON和ZEN污染情况调查[J]. 中国家禽,2018,40(10):69−72. [9] 宋丹, 李蕴玉, 杨彩然, 等. 河北省蛋鸡配合饲料及原料中霉菌毒素的污染情况[J]. 中国家禽,2019,41(10):78−80. [10] Volko A, Karlovsky P. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production[J]. Natural Toxins,1998(7):1−23. [11] 孙玲玉. 枯草芽孢杆菌泰山株的分离鉴定及其对黄曲霉毒素的降解作用研究[D]. 泰安: 山东农业大学, 2014. [12] Yunus A W, Razzazi-fazeli E, Bohm J. Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: A review of history and contemporary issues[J]. Toxins,2011,3(6):566−590. doi: 10.3390/toxins3060566 [13] 张俊楠, 王金全, 杨凡, 等. 饲料霉菌毒素生物降解研究进展[J]. 饲料工业,2019,40(21):51−58. [14] Mannon J, Johnaon E. Fungi down on the farm[J]. New Scientist,1985,105:12−16. [15] Kriszt R, Krifaton C, Szoboszlay S, et al. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 strain[J]. Plos One,2012,7(9):e43608. doi: 10.1371/journal.pone.0043608 [16] 龙淼, 何润霞, 刘义, 等. 玉米赤霉烯酮降解菌的分离与鉴定[J]. 畜牧与兽医,2015,47(8):34−38. [17] Cho K J, Kang J S, Cho W T, et al. In vitro degradation of zearalenone by Bacillus subtilis[J]. Biotechnology Letters,2010,32(12):1921−1924. doi: 10.1007/s10529-010-0373-y [18] 耿海荣, 张晨曦, 赵月菊, 等. 一株高效降解玉米赤霉烯酮的耐酸耐高温枯草芽孢杆菌的研究[J]. 核农学报,2019,33(7):1399−1407. doi: 10.11869/j.issn.100-8551.2019.07.1399 [19] Harkai P, Szabṓ I, Cserhati M, et al. Biodegradation of aflatoxin B1 and zearalenone by Streptomyces sp. collection[J]. International Biodeterioration & Biodegradation,2016,108:48−56. [20] Saumuel M S, Sivaramakrishna A, Mehta A. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida[J]. International Biodeterioration& Biodegradation,2014,86:202−209. [21] 董曼佳, 杨其亚, 孙伟, 等. 拮抗酵母菌控制玉米赤霉烯酮的研究进展[J]. 食品科学,2016,37(1):230−234. doi: 10.7506/spkx1002-6630-201601040 [22] Bakutis B, Baliukoniene V, Paṥkevicius A. Use of biological method for detoxification of mycotoxins[J]. Botanica Lithuanica,2005,7:123−129. [23] 王亚楠, 陈莹莹, 吴玉洪, 等. 甲基营养型芽孢杆菌对黄瓜促生作用及其机理研究[J]. 北方园艺,2020(12):1−7. [24] 李欢, 曹雪梅, 陈茹, 等. 高效拮抗链孢霉和绿色木霉海洋细菌的筛选及鉴定[J]. 南方农业学报,2019,50(7):1519−1526. doi: 10.3969/j.issn.2095-1191.2019.07.16 [25] 胡晓丹, 王建伟, 李孝敬. 赤霉病菌拮抗菌Bacillus subtilis AF0907抗菌物质研究[J]. 中国生物防治学报,2015,31(3):378−385. [26] 潘丽婷. 玉米赤霉烯酮降解菌的分离鉴定、降解特性及机理研究[D]. 南京: 南京农业大学, 2018. [27] 何润霞. 玉米赤霉烯酮降解菌的筛选鉴定及降解特性研究[D]. 沈阳: 沈阳农业大学, 2016. [28] 张倩. 玉米赤霉烯酮脱毒菌株的筛选及Fosmid文库构建[D]. 华南理工大学, 2016. [29] 张倩, 熊犍, 赵晨, 等. 玉米赤霉烯酮脱毒菌株的筛选及脱毒机理初探[J]. 粮油食品科技,2016,24(6):76−81. doi: 10.3969/j.issn.1007-7561.2016.06.017 [30] 骆翼. 玉米赤霉烯酮的微生物脱毒研究[D]. 上海: 上海交通大学, 2014. [31] Yi P J, Pai C K, Liu J R. Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone[J]. World Journal of Microbiology and Biotechnology,2011,27:1035−1043. doi: 10.1007/s11274-010-0548-7 [32] 谭辉. 牛瘤胃液中玉米赤霉烯酮降解菌的分离、鉴定及降解特性研究[D]. 雅安: 四川农业大学, 2014. [33] 雷元培. ANSB01G菌对玉米赤霉烯酮的降解机制及其动物试验效果研究[D]. 北京: 中国农业大学, 2014. [34] 张晨曦, Yawa M E F, 赵月菊, 等. 解淀粉芽孢杆菌 NS2 降解玉米赤霉烯酮的研究[J]. 核农学报,2020,34(7):1507−1517. doi: 10.11869/j.issn.100-8551.2020.07.1507 [35] 王国兵. 一株高效降解玉米赤霉烯酮细菌的研究[D]. 北京: 北京化工大学, 2015. [36] Xu J H, Wang H, Zhu Z, et al. Isolation and characterization of Bacillus amyloliquefaciens ZDS-1: Exploring the degradation of zearalenone by Bacillus spp.[J]. Food Control,2016,68:244−250. doi: 10.1016/j.foodcont.2016.03.030 [37] 唐彧, 张琼琼, 郭永鹏, 等. 一株同时降解玉米赤霉烯酮和黄曲霉毒素B1的谷氨酸棒状杆菌及其降解特性研究[J]. 饲料工业,2019,40(20):34−39. -