• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

咖啡酰奎宁酸类化合物抑菌活性的网络药理学研究

朱文卿 李玲玉 张利 左兆河 郑振佳 马越

朱文卿,李玲玉,张利,等. 咖啡酰奎宁酸类化合物抑菌活性的网络药理学研究[J]. 食品工业科技,2021,42(13):11−20. doi:  10.13386/j.issn1002-0306.2021030017
引用本文: 朱文卿,李玲玉,张利,等. 咖啡酰奎宁酸类化合物抑菌活性的网络药理学研究[J]. 食品工业科技,2021,42(13):11−20. doi:  10.13386/j.issn1002-0306.2021030017
ZHU Wenqing, LI Lingyu, ZHANG Li, et al. Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids[J]. Science and Technology of Food Industry, 2021, 42(13): 11−20. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030017
Citation: ZHU Wenqing, LI Lingyu, ZHANG Li, et al. Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids [J]. Science and Technology of Food Industry, 2021, 42(13): 11−20. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030017

咖啡酰奎宁酸类化合物抑菌活性的网络药理学研究

doi: 10.13386/j.issn1002-0306.2021030017
基金项目: 山东省自然科学基金(ZR2019BC100);农业农村部蔬菜产后处理重点实验室开放课题;泰山产业领军人才工程高效生态农业创新类计划(LJNY201705);山东省重点扶持区域引进急需紧缺人才项目;山东省重大科技创新工程项目(2019JZZY011020)
详细信息
    作者简介:

    朱文卿(1996−),女,硕士研究生,研究方向:农产品加工与贮藏,E-mail:zhuwenqing1218@163.com

    通讯作者:

    马越(1971−),女,硕士,副研究员,研究方向:农产品贮藏加工,E-mail:mayue@nercv.org

  • 中图分类号: R285.5

Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids

  • 摘要: 目的:基于网络药理学方法探讨咖啡酰奎宁酸类化合物抑菌的作用机制。方法:通过文献挖掘和数据库检索获取咖啡酰奎宁酸类化合物对应靶点、抑菌相关靶点及两者交集靶点,将交集靶点构建蛋白互作(protein-protein interaction network,PPI)网络,并进行基因本体(Gene Ontology,GO)分析及京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genome,KEGG)分析。结果:咖啡酰奎宁酸类化合物对应靶点483个,抑菌相关靶点805个,咖啡酰奎宁酸类化合物抑菌作用靶点75个,起关键作用的为TNFAKT1、ALBMMP9、EGFRMAPK8等靶点。GO功能分析及KEGG通路富集分析结果显示,咖啡酰奎宁酸类化合物抑菌的作用机制主要涉及应激反应、代谢过程、生物调节、多细胞生物过程、细胞讯息传递等生物过程,并通过细胞外基质组织、胶原蛋白降解、基质金属蛋白酶的激活和神经生长因子信号通路等多条通路共同发挥作用。化合物与分子靶点对接结果良好,验证了网络构建预测的准确性。结论:本研究揭示了咖啡酰奎宁酸类化合物抑菌具有多靶点、多途径的特点,为其分子机制的进一步研究奠定了基础。
  • 图  1  咖啡酰奎宁酸类化合物的特征结构

    Figure  1.  The characteristic structure of caffeoylquinic acids

    图  2  “咖啡酰奎宁酸类化合物-靶点”网络图

    Figure  2.  Network diagram of "caffeoylquinic acids-target"

    图  3  咖啡酰奎宁酸类化合物与抑菌作用靶点Venn图

    Figure  3.  Venn diagram of caffeoylquinic acids and antibacterial related targets

    图  4  咖啡酰奎宁酸类化合物抑菌的PPI网络

    Figure  4.  PPI network of the antibacterial effect of caffeoylquinic acids

    图  5  咖啡酰奎宁酸类化合物抑菌作用靶点GO分析

    Figure  5.  GO analysis of antibacterial targets of caffeoylquinic acids

    图  6  咖啡酰奎宁酸类化合物抑菌关键靶点KEGG通路富集分析

    Figure  6.  KEGG pathway enrichment analysis of key antibacterial targets of caffeoylquinic acids

    图  7  咖啡酰奎宁酸类化合物抑菌作用靶点与作用通路网络分析

    Figure  7.  Caffeoylquinic acids antibacterial targets and pathway network analysis

    图  8  TNFAKT1与关键成分的最佳对接构象

    Figure  8.  Optimal docking conformation of TNF, AKT1 and key components

    注:A. TNF与绿原酸的最佳对接构象;B. TNF与异绿原酸A的最佳对接构象;C. AKT1与 1,3,5-O-三咖啡酰奎宁酸的最佳对接构象。

    表  1  Degree值排名前30位靶点信息表

    Table  1.   Information table of the top 30 targets with Degree value

    编号目标基因目标蛋白质Degree靶向蛋白的生物学活性参考文献
    1TNFTumor necrosis factor46杀伤转化细胞和某些病毒感染的细胞[27]
    2AKT1RAC-alpha serine/threonine-protein kinase;45调控细胞存活和凋亡[29]
    3ALBSerum albumin40调节血液的胶体渗透压[30]
    4MMP9Matrix metalloproteinase-936在细胞外基质的蛋白水解和白细胞迁移中起重要作用[31]
    5EGFREpidermal growth factor receptor36参与细胞功能的调节[32]
    6MAPK8Mitogen-activated protein kinase 835调控细胞增殖、分化、迁移及凋亡[35]
    7CASP3Caspase-334调控细胞凋亡[36]
    8MAPK1Mitogen-activated protein kinase 133参与细胞生长、粘附、存活和分化[35]
    9MMP272 kDa type IV collagenase30参与血管系统重塑、血管生成、组织修复、肿瘤浸润及炎症反应[31]
    10MAPK14Mitogen-activated protein kinase 1427刺激促炎性细胞因子及激活转录因子[37]
    11ESR1Estrogen receptor24转录因子[38]
    12SIRT1NAD-dependent protein deacetylase sirtuin-123调控细胞凋亡、生存及分化[33]
    13IL-2Interleukin-221对病原微生物的防御和清除起到重要作用[34]
    14XIAPE3 ubiquitin-protein ligase XIAP20调控细胞增殖、凋亡[39]
    15MMP1interstitial collagenase20降解细胞外基质[31]
    16MCL1Induced myeloid leukemia cell differentiation protein Mcl-120调控细胞凋亡[40]
    17PLGPlasminogen19参与组织重塑和肿瘤侵袭过程[41]
    18CASP1Caspase-119参与多种炎症过程[42]
    19ELANENeutrophil elastase18参与多种炎症过程[43]
    20AGTR1Type-1 angiotensin II receptor18调控血压和液体稳态[44]
    21MMP7Matrilysin17激活胶原蛋白原酶[31]
    22PARP1Poly [ADP-ribose] polymerase 116调控细胞生长、分化[45]
    23CXCR2C-X-C chemokine receptor type 216参与炎症反应[46]
    24ADAM17Disintegrin and metalloproteinase domain-containing protein 1714参与细胞粘附、融合、迁移及信号传导[47]
    25BCL2Apoptosis regulator Bcl-214调控细胞凋亡[48]
    26CDK4Cyclin-dependent kinase 414调控细胞周期[49]
    27MMP8Neutrophil collagenase13降解I、II、III型胶原纤维[50]
    28CTSKCathepsin K13参与细胞外基质降解[51]
    29SELEE-selectin13参与免疫粘附过程[52]
    30MAPK10Mitogen-activated protein kinase 1013刺激促炎性细胞因子[53]
    下载: 导出CSV

    表  2  KEGG通路富集分析相关基因

    Table  2.   Related genes for KEGG pathway enrichment analysis

    通路名称相关基因P基因数
    Intrinsic Pathway for ApoptosismembraneAKT1, BCL2, CASP3, MAPK8, XIAP1.06455E-055
    Activation of BH3-only proteinsAKT1, BCL2, MAPK80.0011169033
    Signaling by ERBB4ADAM17, EGFR, ESR10.0034005263
    Antigen processing-Cross presentationCTSL, CTSS, HLA-A, IKBKB0.004954174
    Endosomal/Vacuolar pathwayCTSL, CTSS, HLA-A4.98677E-053
    Collagen degradationADAM17, CTSK, CTSL, ELANE, FURIN, MMP1, MMP2, MMP7, MMP8, MMP91.44433E-1110
    Degradation of the extracellular matrixADAM17, CASP3, CTSK, CTSL, CTSS, ELANE, FURIN, MMP1, MMP2, MMP7, MMP8, MMP9, PLG, TPSAB14.44466E-1314
    Extracellular matrix organizationADAM17, CASP3, CTSK, CTSL, CTSS, ELANE, FURIN, MMP1, MMP2, MMP7, MMP8, MMP9, PLG, TPSAB11.30521E-0814
    Collagen formationCTSL, CTSS, MMP7, MMP90.0033990944
    Activation of Matrix MetalloproteinasesCTSK, ELANE, FURIN, MMP1, MMP2, MMP7, MMP8, MMP9, PLG, TPSAB11.04463E-1410
    Toll Like Receptor 4 (TLR4) CascadeIKBKB, IRAK4, MAP3K7, MAPK1, MAPK10, MAPK14, MAPK83.28081E-057
    Activated TLR4 signallingIKBKB, IRAK4, MAP3K7, MAPK1, MAPK10, MAPK14, MAPK81.58446E-057
    MyD88:Mal cascade initiated on plasmaIKBKB, IRAK4, MAP3K7, MAPK1, MAPK10, MAPK14, MAPK84.33043E-067
    MyD88-independent TLR4 cascadeIKBKB, MAP3K7, MAPK1, MAPK10, MAPK14, MAPK86.96357E-056
    NGF signallingADAM17, CASP3, FURIN, IKBKB, MAPK1, MAPK14, MAPK80.0001943947
    Trafficking and processing of endosomal TLRCTSK, CTSL, CTSS8.55839E-053
    Toll Like Receptor 9 (TLR9) CascadeIKBKB, IRAK4, MAP3K7, MAPK1, MAPK10, MAPK14, MAPK85.3083E-067
    Toll Like Receptor 10 (TLR10) CascadeIKBKB, IRAK4, MAP3K7, MAPK1, MAPK10, MAPK14, MAPK82.08051E-067
    Toll Like Receptor 3 (TLR3) CascadeIKBKB, MAP3K7, MAPK1, MAPK10, MAPK14, MAPK86.58958E-056
    Toll Like Receptor 5 (TLR5) CascadeIKBKB, IRAK4, MAP3K7, MAPK1, MAPK10, MAPK14, MAPK82.08051E-067
    下载: 导出CSV

    表  3  2个靶点与3个关键成分的分子对接得分

    Table  3.   Molecular docking scores of 2 targets and 3 key components

    化合物靶点蛋白库编号自由结合能( kCal/mol)均方根误差
    绿原酸TNF6rmj−9.61.205
    AKT13o96−9.11.983
    异绿原酸ATNF6rmj−9.60.477
    AKT13o96−10.11.729
    1,3,5-O-三咖啡酰奎宁酸TNF6rmj−7.03.494
    AKT13o96−10.51.986
    下载: 导出CSV
  • [1] Carvalho I, Henriques M, Carvalho S. New strategies to fight bacterial adhesion[M]. Spain: Formatex Research Center, 2013.
    [2] Liu Q, Meng X, Li Y, et al. Antibacterial and antifungal activities of spices[J]. Internatonal Journal of Molecular Sciences,2017,18(6):1283. doi:  10.3390/ijms18061283
    [3] Murugavel S, Deepa S, Ravikumar C, et al. Synthesis, structural, spectral and antibacterial activity of 3, 3a, 4, 5-tetrahydro-2H-benzo[g]indazole fused carbothioamide derivatives as antibacterial agents[J]. Journal of Molecular Structure,2020,1222:128961. doi:  10.1016/j.molstruc.2020.128961
    [4] 朱文卿, 任汉书, 徐美霞, 等. 咖啡酰奎宁酸类化合物的生物学活性及提高生物利用度技术研究进展[J]. 食品科学,2021,42(3):321−329. doi:  10.7506/spkx1002-6630-20200102-021
    [5] 吴琪珍. 咖啡酰奎宁酸类化合物研究进展[J]. 中国野生植物资源,2020,39(4):48−53, 60. doi:  10.3969/j.issn.1006-9690.2020.04.011
    [6] 王玲娜, 姚佳欢, 马超美. 绿原酸的研究进展[J]. 食品与生物技术学报,2017,36(11):1121−1130. doi:  10.3969/j.issn.1673-1689.2017.11.001
    [7] Chen Y S, Geng S, Liu B G. Three common caffeoylquinic acids as potential hypoglycemic nutraceuticals: Evaluation of α-glucosidase inhibitory activity and glucose consumption in HepG2 cells[J]. Journal of Food Biochemistry,2020,44(9):13361.
    [8] Ritu K, Anurag K. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of chlorogenic acid against urease protein and H. Pylori bacterium[J]. BMC Chemistry,2019,13(1):41. doi:  10.1186/s13065-019-0556-0
    [9] Karunanidhi A, Thomas R, Belkum A V, et al. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain[J]. BioMed Research International,2013,2012:392058.
    [10] 王虹懿, 刘芳, 孙芝兰, 等. Helveticin-M与绿原酸复配对大肠杆菌和肠炎沙门氏菌的抑菌效果及其机制[J]. 食品科学,2020,41(3):68−74. doi:  10.7506/spkx1002-6630-20190228-229
    [11] Zhu X F, Zhang H X, Lo R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities[J]. Journal of Agricultural and Food Chemistry,2004,52(24):7272−7278. doi:  10.1021/jf0490192
    [12] Lou Z X, Wang H X, Zhu S, et al. Antibacterial activity and mechanism of action of chlorogenic acid[J]. Journal of Food Science,2011,76(6):398−403. doi:  10.1111/j.1750-3841.2011.02213.x
    [13] 潘婉莲, 赵苗, 袁芳, 等. 我国天然产物绿原酸活性及提取工艺研究进展[J]. 食品安全质量检测学报,2017,8(11):4269−4276. doi:  10.3969/j.issn.2095-0381.2017.11.032
    [14] Yun J E, Lee D G. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans[J]. Biochimica Et Biophysica Acta,2017,1861(3):585−592. doi:  10.1016/j.bbagen.2016.12.026
    [15] 任艳, 邓燕君, 马焓彬, 等. 网络药理学在中药领域的研究进展及面临的挑战[J]. 中草药,2020,51(18):4789−4797. doi:  10.7501/j.issn.0253-2670.2020.18.024
    [16] 苏和毅, 郭振辉. 持续炎性反应-免疫抑制-分解代谢综合征治疗策略初探[J]. 中华胃肠外科杂志,2017,20(12):1444−1447. doi:  10.3760/cma.j.issn.1671-0274.2017.12.030
    [17] 李彪, 林晗, 唐照琦, 等. 基于网络药理学的商陆及其拆分组分的作用机制研究[J/OL]. 中国中药杂志: 1-10[2021-02-26]. . https: //doi. org/10.19540/j. cnki. cjcmm. 20210120.401.
    [18] 李洋, 夏厚林, 周厚琴, 等. 基于分子对接技术预测人面子叶中黄酮成分抗菌作用靶点[J]. 中国医院用药评价与分析,2016,16(10):1303−1307.
    [19] Yang X, Liu H, Liu J, et al. Rational selection of the 3D Structure of biomacromolecules for molecular docking studies on the mechanism of endocrine disruptor action[J]. Chemical Research in Toxicology,2016,29(9):1565−1570. doi:  10.1021/acs.chemrestox.6b00245
    [20] 齐云云, 温鹏, 于诗怡, 等. 五倍子抗炎、抗菌活性指导下的有效成分分离与抗口腔溃疡网络药理学评价[J]. 石河子大学学报(自然科学版),2020,38(5):620−628.
    [21] 袁家威, 张海涛, 揭珂, 等. 基于网络药理学研究桃红四物汤治疗假体周围感染的潜在靶点和机制[J]. 中国组织工程研究,2021,25(9):1428−1433. doi:  10.3969/j.issn.2095-4344.4012
    [22] 包雅婷, 王玥, 任晓东, 等. 基于网络药理学的紫斑牡丹花、叶抗菌活性和作用机制研究[J]. 中国中药杂志,2018,43(4):779−785.
    [23] Hillenmeyer S, Davis L K, Gamazon E R, et al. Stams: String-assisted module search for genome wide association studies and application to autism[J]. Bioinformatics,2016,32(24):3815−3822. doi:  10.1093/bioinformatics/btw530
    [24] Michael K, Sebastian W, Bettina W. Cytoscape: Software for visualization and analysis of biological networks[J]. Methods in Molecular Biology,2011,696:291−303.
    [25] 郑美思, 许强, 周海, 等. 基于网络药理学的金匮肾气丸治疗2型糖尿病作用机制探讨[J]. 中华中医药学刊,2020,38(11):126−131, 271-273.
    [26] Maere S, Heymans K, Kuiper M. Bingo: A cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks[J]. Bioinformatics,2005,21(16):2.
    [27] Montfort A, Colacios C, Levade T, et al. The TNF paradox in cancer progression and immunotherapy[J]. Frontiers in Immunology,2019,10:2515. doi:  10.3389/fimmu.2019.02515
    [28] Varley C D, Deodhar A A, Ehst B D, et al. Persistence of staphylococcus aureus colonization among individuals with immune-mediated inflammatory diseases treated with TNF-α inhibitor therapy[J]. Rheumatology,2014,53(2):332−337. doi:  10.1093/rheumatology/ket351
    [29] 赵洁, 王欢欢, 欧阳意, 等. 基于网络药理学及质谱分析的葶苈大枣泻肺汤抗心衰的有效成分发现及作用机制[J/OL]. 中国实验方剂学杂志: 1-15[2021-03-23]. https: //doi. org/10.13422/j. cnki. syfjx. 20210414.
    [30] 罗艺晨, 黄利明, 杨颖, 等. 绿原酸抑制金黄色葡萄球菌机理研究[J]. 西南大学学报(自然科学版),2016,38(3):15−19.
    [31] Falanga V. Wound healing and its impairment in the diabetic foot[J]. The Lancet,2005,366(9484):1736−1743.
    [32] 余婷, 杨柱, 龙奉玺, 等. 基于网络药理学探讨黄精-百合药对抗癌作用的机制[J]. 中国实验方剂学杂志,2020,26(5):168−177.
    [33] Lee K S, Kim S R,Lee Y R, et al. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-κB and hypoxia-inducible factor-1α[J]. Experimental & Molecular Medicine,2007,39(6):756−768.
    [34] Tian L, Qu X, Wang M E, et al. Selective inhibition of IL-2 mRNA blocks allograft rejection by limiting T cell clonal expansion[J]. Transplantation Proceedings,2001,33(1):330−330.
    [35] 万智双, 熊丁, 曹宸. MiR-433-3p靶向MAPK8对肝癌细胞MHCC97H增殖、凋亡和迁移的调控作用[J]. 中国免疫学杂志,2020,36(1):57−62. doi:  10.3969/j.issn.1000-484X.2020.01.011
    [36] Launay O, Rosenberg A R, Rey D, et al. Long-term immune response to hepatitis B virus vaccination regimens in adults with human immunodeficiency virus 1: Secondary analysis of a randomized clinical trial[J]. Jama Internal Medicine,2016,176(5):603−610. doi:  10.1001/jamainternmed.2016.0741
    [37] Madkour M M, Anbar H S, El-Gamal M I. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors[J]. European Journal of Medicinal Chemistry,2021,213:113216. doi:  10.1016/j.ejmech.2021.113216
    [38] Kumamoto T, Togo S, Ishibe A, et al. Role of nitric oxide synthesized by nitric oxide synthase 2 in liver regeneration[J]. Liver International,2008,28(6):865−877. doi:  10.1111/j.1478-3231.2008.01712.x
    [39] 李功成, 潘铁军, 田雨冬, 等. 曲古抑菌素A膀胱灌注对大鼠膀胱癌生长的抑制作用[J]. 临床泌尿外科杂志,2013,28(2):148−151.
    [40] Li S J, Guo W P, Wu H J. The role of post-translational modifications in the regulation of MCL1[J]. Cellular Signalling,2021,81:109933. doi:  10.1016/j.cellsig.2021.109933
    [41] Klinger M H F, Jelkmann W. Role of blood platelets in infection and inflammation[J]. Journal of Interferon & Cytokine Research,2002,22(9):913−922.
    [42] 邓莉, 田静. 白藜芦醇抑制大肠埃希菌O104: H4诱导的结肠上皮细胞NLRP3炎症小体活化[J]. 中国临床药理学与治疗学,2021,26(2):167−173.
    [43] Gilberto V A, Rosalinda P S, Julian R B. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies[J]. Life Sciences,2020,260(1):118313.
    [44] 杨小英, 陈春玲, 马晓聪, 等. 基于网络药理学探讨温胆汤治疗高血压的作用机制[J]. 中西医结合心脑血管病杂志,2020,18(24):4108−4116. doi:  10.12102/j.issn.1672-1349.2020.24.003
    [45] Rudolph J, Roberts G, Luger K. Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs[J]. Nature Communications,2021,12(1):736. doi:  10.1038/s41467-021-20998-8
    [46] 尚立芝, 季书, 石龙涛, 等. 基于CXCL8-CXCR1/2轴探讨二陈汤加味对COPD大鼠的抗炎机制[J]. 中国实验方剂学杂志,2020,26(11):40−48.
    [47] 努尔阿米娜·依明尼亚孜, 帕力旦·艾沙, 阿依姆妮萨·阿卜杜热合曼. 奇果菌素调控miR-646/ADAM17通路对白血病细胞增殖、凋亡的影响及机制[J]. 河北医药,2020,42(24):3702−3707. doi:  10.3969/j.issn.1002-7386.2020.24.004
    [48] Antonio T, Daniel R, Silvia V, et al. Prognostic value of Bcl2 and p53 in Hodgkin lymphoma: A systematic review and meta-analysis[J]. Pathology-Research and Practice,2021,219:153370. doi:  10.1016/j.prp.2021.153370
    [49] 陈观平, 李明乾, 应栩华. 异鼠李素通过mTOR通路抑制肺癌增殖、侵袭及其机制研究[J/OL]. 中药材, 2021(2): 423-428[2021-03-25]. https: //doi. org/10.13863/j. issn1001-4454.2021. 02.032.
    [50] 郭争荣. 基质金属蛋白酶8基因治疗大鼠肝硬化的实验研究[D]. 石家庄: 河北医科大学, 2007.
    [51] Wei W, Ren J, Yin W W, et al. Inhibition of ctsk modulates periodontitis with arthritis via downregulation of TLR9 and autophagy[J]. Cell Proliferation,2020,53(1):e12722.
    [52] 高俊潇. 细胞粘附分子相关基因SELE, COL1A1, ITGAV和CAECAM1对过敏性鼻炎的影响[D]. 广州: 南方医科大学, 2020.
    [53] Gao Y, Wang Y F, Wang X F, et al. MiR-335-5p suppresses gastric cancer progression by targeting MAPK10[J]. Cancer Cell International,2021,21(1):71. doi:  10.1186/s12935-020-01684-z
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  80
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-02
  • 网络出版日期:  2021-05-11
  • 刊出日期:  2021-07-02

目录

    /

    返回文章
    返回