Effects of Different Processing Methods on Umami Taste and Antioxidant Capability of Water Extracts of Morchella esculenta
-
摘要: 本文研究了热加工(70、90 ℃)和非热加工(室温、超声、均质和超高压)对不同粒径羊肚菌水提液鲜味成分及抗氧化性能的影响,为羊肚菌的精深加工提供参考。采用高效液相色谱和氨基酸分析仪分别检测了提取液中5’-核苷酸(5’-CMP、5’-UMP、5’-XMP、5’-GMP、5’-IMP和5’-AMP)和游离氨基酸(17种)的含量,并计算、对比各加工条件下羊肚菌的等鲜度(EUC)。通过三种抗氧化法(DPPH、FRAP和ABTS)综合评价各提取液的抗氧化性能。结果表明,除室温处理外,其它处理下,超微粉碎(P2或P3,菌粉粒径分别为35.52和6.28 μm)不同程度地提升羊肚菌水提液中5’-核苷酸含量,但降低了提取液中呈鲜味氨基酸和总游离氨基酸(FAA)含量,使得菌粉的EUC值从106.58 g MSG/100 g~493.97 g MSG/100 g降低至74.70 g MSG/100 g~364.35 g MSG/100 g。相比室温处理,其它处理均能提高羊肚菌水提液的EUC值,但热处理降低了提取液的抗氧化性能,非热处理中HHP(超高压处理)能够取得最优的EUC值和理想的抗氧化效果,其中,未经超微粉碎的菌粉经HHP处理后具有最高EUC值和抗氧化能力,适用于羊肚菌水提液的精深加工。Abstract: This study was aimed to compare the effects of thermal treatment (70, 90 ℃) and non-thermal treatment (room temperature, ultrasound treatment, homogenization and high hydrostatic pressure) on the umami taste and antioxidant capability of water extracts of Morchella esculenta. The content of 5’-nucleotide (5’-CMP, 5’-UMP, 5’-XMP, 5’-GMP, 5’-IMP and 5’-AMP) and free amino acid (17 kinds) in these extracts were analyzed by high performance liquid chromatography and amino acid analyzer respectively, and their corresponding value of Equivalent Umami Concentration (EUC) were calculated. Antioxidant properties of each water extract of Morchella esculenta were comprehensively evaluated by DPPH, FRAP and ABTS methods. Except for the treatment of RT (room temperature), other treatment on finely pulverized Morchella esculenta powder (P2 or P3, 35.52 and 6.28 μm, respectively) increased the contents of total 5'-nucleotides while decreased the contents of umami amino acids and total free amino acids (FAA) in their corresponding water extract. Therefore, the EUC values of the Morchella esculenta extracts were changed from 106.58 g MSG/100 g~493.97 g MSG/100 g to 74.70 g MSG/100 g~364.35 g MSG/100 g. Compared with the room temperature treatment, other treatments improved the EUC value of the water extracts. However, thermal treatment decreased the antioxidant capacity of the extract, and non-thermal treatment of HHP displayed the highest EUC value and ideal antioxidant effect. Especially, the original Morchella esculenta powder without superfine grinding had the highest EUC value and the best antioxidant capacity after HHP treatment, which might be suitable for the further processing of Morchella esculenta.
-
表 1 不同加工方式对羊肚菌水提液中5’-核苷酸含量的影响 (mg/100 g DM)
Table 1. Effects of different processing methods on 5’-nucleotide content in Morchella esculenta water extract (mg/100 g DM)
处理方式 粒径 5’-CMP 5’-UMP 5’-XMP 5’-GMP 5’-IMP 5’-AMP 总计 RT P1 274.08±5.64jk 102.04±3.26de 0 10.01±0.36jk 142.42±3.84f 170.91±7.62g 699.46±20.72g P2 262.36±4.58k 61.31±2.11gh 0 14.85±0.84ijk 92.26±5.78gh 251.75±10.36f 682.53±23.67g P3 477.72±7.45g 92.03±4.58e 5.07±0.32j 67.05±2.75e 58.61±2.71i 179.35±7.65g 879.83±25.46f 70 ℃ P1 589.04±8.99c 76.87±2.84f 36.60±1.62d 79.14±2.89c 299.50±9.65b 351.19±12.16c 1432.34±38.15a P2 541.85±9.27d 91.87±3.87e 16.64±0.68g 49.63±2.31f 541.54±15.74a 232.35±10.32f 1473.88±42.19a P3 508.34±8.65ef 111.72±2.98cd 62.53±2.30a 41.24±1.65g 165.29±5.23e 248.39±9.48f 1137.51±30.29bc 90 ℃ P1 482.89±7.35fg 93.12±3.57e 14.91±0.62gh 128.31±4.03b 86.30±3.76gh 183.64±7.55g 989.17±26.88de P2 588.15±9.18c 129.07±3.97b 24.76±1.03f 194.36±4.25a 92.26±4.91gh 190.69±8.33g 1219.29±31.67b P3 513.88±10.21e 120.02±4.06bc 39.26±1.28d 133.89±5.77b 80.07±3.98ghi 190.93±7.59g 1078.05±32.89cd UT P1 261.84±3.88k 46.76±2.33i 0 15.85±0.69ij 310.73±10.35b 121.33±5.36h 756.51±22.61g P2 471.10±6.23gh 66.04±3.86g 0 10.83±0.08jk 212.54±9.26cd 308.12±10.69de 1068.63±30.12cd P3 675.78±12.17a 157.18±4.95a 13.66±0.71h 71.55±0.39de 90.85±3.76gh 201.51±9.32g 1210.53±31.30b HG P1 449.06±6.29h 63.97±2.58g 47.53±1.06c 21.69±0.17hi 230.80±9.09c 407.60±13.03b 1220.65±32.22b P2 492.38±7.15efg 71.58±3.02fg 29.67±0.39e 17.68±0.59ij 140.33±6.55f 469.36±15.01a 1221.00±32.71b P3 618.28±10.35b 103.52±2.96d 52.38±1.24b 76.33±2.74cd 104.33±4.65g 256.62±9.38f 1211.46±31.32b HHP P1 293.18±5.56j 52.28±1.99hi 12.07±0.11hi 7.50±0.06k 201.88±9.78d 297.14±11.62e 864.05±29.12f P2 354.17±5.97i 44.41±1.97i 14.71±0.25gh 14.00±0.10ijk 136.05±6.63f 335.86±12.21cd 899.20±27.13ef P3 517.98±13.22de 81.67±2.03f 10.09±0.08i 26.93±1.09h 70.04±2.74hi 306.47±13.25de 1013.18±32.41d 注:同列小写字母不同表示差异显著,P<0.05;表3同。 表 2 不同加工方式对羊肚菌水提液中游离氨基酸含量的影响 (mg/100 g DM)
Table 2. Effects of different processing methods on FAA content in Morchella esculenta water extract (mg/100 g DM)
氨基酸 RT 70 ℃ 90 ℃ UT HG HHP P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 Asp 102.34±
3.12j144.35±
5.23gh146.57±
4.81gh188.52±
6.32d163.95±
6.21efg131.56±
5.14hi186.84±
7.21d177.56±
3.58ef176.20±
8.26ef138.90±
4.72ghi114.00±
2.91ij105.00±
4.32j177.00±
6.48ef156.00±
4.35fgh115.50±
4.95ij810.75±
15.26a535.21±
14.23b422.72±
16.14cGlu 223.25±
9.15ij221.42±
7.39ij194.04±
7.26jk370.41±
12.15f273.25±
13.52hi214.99±
8.32j607.39±
20.03d385.92±
15.33ef428.77±
15.69e225.60±
8.31ij154.80±
6.19k195.60±
7.58jk339.00±
10.66fg339.00±
8.79fg313.20±
12.12gh1380.47±
32.14a1211.81±
30.52b1090.56±
28.97cAla 91.45±
2.55gh76.82±
2.21hij46.76±
1.57k84.15±
3.65ghi70.71±
2.88hij57.22±
1.96jk101.85±
4.08g87.15±
3.05ghi97.83±
4.77g134.40±
3.94f63.30±
3.48ijk67.20±
2.99hij225.56±
8.68de231.12±
5.49d206.41±
8.05e521.65±
18.29a436.06±
19.15b320.89±
10.67cGly 72.46±
2.58ef55.39±
2.65fghi45.86±
2.06ghi57.96±
2.20fghi60.24±
2.12fgh37.44±
1.02i58.71±
2.24fghi51.24±
1.58fghi52.14±
3.68fghi66.30±
2.94fg39.05±
1.45hi45.24±
2.06ghi87.00±
3.48e114.00±
4.91d69.25±
3.06ef349.97±
12.04a277.92±
14.25b234.02±
15.88cPro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Ser 41.23±
2.12j50.42±
2.85ij56.75±
3.46ij127.82±
5.52fg122.44±
4.65g103.84±
4.68h196.95±
6.92d145.43±
6.65ef147.11±
6.48e87.35±
5.77h54.90±
3.01ij36.65±
2.23j51.00±
2.06ij66.21±
2.87i39.61±
1.64j359.28±
11.68a307.35±
12.32b242.40±
10.01cThr* 32.60±
1.13j78.82±
3.32h69.06±
3.09hi175.53±
8.25ef160.42±
9.64f112.92±
4.79g210.98±
8.65d190.36±
7.59de191.59±
7.46de59.12±
2.21hi49.50±
3.56ij44.23±
1.43ij81.26±
3.69h78.55±
2.52h64.23±
2.57hi453.28±
15.48a379.82±
12.43b278.37±
14.52cArg* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 His 0 0 0 0 0 0 0 0 0 21.91±
1.12d9.14±
0.62f0 12.00±
0.35ef18.57±
1.21d14.15±
0.68e78.65±
2.87a65.46±
3.14b44.74±
3.05cLeu* 82.02±
3.54g36.34±
2.06h51.63±
2.12gh321.18±
10.35ab256.51±
11.12c321.18±
13.25ab340.45±
14.06a312.35±
10.15ab340.35±
14.69a192.93±
10.23e195.65±
11.45e152.44±
10.12f243.00±
12.57c237.52±
13.52cd132.30±
7.12f295.37±
13.26b331.89±
14.28a205.66±
8.41deIle* 60.84±
2.56f50.26±
2.26fg25.52±
2.11fg527.26±
23.31a519.25±
16.52a337.76±
16.29b498.11±
20.15a302.00±
13.25c253.07±
14.55d31.54±
1.25fg19.28±
1.06g20.40±
1.25g36.45±
2.25fg36.28±
1.58fg23.44±
1.11fg250.90±
14.48d231.67±
11.26d157.14±
6.25eMet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Phe* 0 0 0 267.70±
10.28c268.60±
14.65c183.78±
10.02e91.41±
7.54h75.15±
2.17h144.92±
8.65f137.10±
7.28f144.35±
6.15f227.71±
7.59d255.64±
10.06c153.81±
8.09f132.93±
3.15f395.41±
13.77b476.71±
15.62a416.46±
13.32bVal* 67.07±
2.23ij60.23±
3.50ij45.56±
1.89j131.55±
5.64de112.30±
6.21defg124.93±
7.06def94.81±
3.33gh134.84±
4.32d111.27±
3.58defg99.31±
5.58fgh83.74±
2.14hi107.71±
4.48efgh132.66±
7.35de126.52±
7.49de93.37±
2.51gh412.62±
16.32a375.83±
15.87b227.05±
16.39cTyr 0 0 0 0 0 0 0 0 0 75.00±
2.24e84.61±
5.78e126.65±
7.86d174.21±
9.32b172.56±
15.17bc130.88±
10.26d162.11±
6.55bc152.71±
8.91c234.54±
12.22aLys* 60.82±
2.25fgh48.78±
1.69hi42.04±
1.58hi170.27±
8.33c140.18±
5.57d150.49±
8.24d90.09±
3.59e76.49±
4.86ef70.42±
5.48fg49.25±
1.16hi39.76±
2.58i51.64±
1.26ghi69.55±
5.18fg57.86±
5.64fghi48.92±
4.19hi216.26±
12.36a237.52±
10.07b182.32±
6.67cCys 179.83±
6.74fg139.51±
8.28g249.59±
10.03e419.23±
16.15bc402.38±
8.79c493.54±
26.58a440.95±
20.01bc398.69±
18.87c455.10±
19.97ab412.11±
12.68bc332.00±
15.58d325.58±
20.04d401.22±
10.87c455.61±
23.15ab329.15±
10.03d196.09±
12.25f225.49±
15.32ef207.32±
5.89ef鲜味
氨基酸325.59±
12.27ij365.77±
12.62hi340.61±
12.07ij558.93±
18.47ef437.20±
19.73gh346.55±
13.46ij794.23±
27.24d563.48±
18.91ef604.97±
23.95e364.5±
13.03hi268.80±
9.10j300.60±
11.90ij516.00±
17.14f495.00±
13.14fg428.70±
17.07gh2191.22±
47.40a1747.02±
44.75b1513.28±
45.11c甜味
氨基酸237.74±
8.38ij261.45±
11.03ij218.43±
10.18j445.46±
19.62ef413.81±
19.29efg311.42±
12.45hi568.49±
21.89d474.18±
18.87e488.67±
22.39de347.17±
14.86gh206.75±
11.50j193.32±
8.71j444.82±
17.91ef489.88±
15.79de379.5±
15.32fgh1684.18±
57.49a1401.15±
58.15b1075.68±
51.08c苦味
氨基酸346.68±
16.20i269.41±
16.17i281.62±
16.36i1512.46±
61.93b1462.28±
65.84b1286.9±
56.49cd1233.71±
61.57de1108.89±
40.14e1161.29±
51.31de587.14±
31.90gh630.81±
31.64gh657.58±
28.83fgh792.77±
37.45f719.98±
38.12fg560.76±
21.72h1785.28±
71.57a1783.69±
76.59a1402.34±
61.72bc无味
氨基酸240.65±
8.99gh188.29±
9.97h291.63±
11.61g589.50±
24.48bcde542.56±
14.36cdef644.03±
34.82ab531.04±
23.60def475.18±
23.73f525.52±
25.45ef536.36±
16.08def456.37±
23.94f503.87±
29.16ef644.98±
25.37ab686.03±
43.96a508.95±
24.48ef574.46±
0.16bcde615.72±
34.30abcd624.18±
24.78abc总氨
基酸1013.91±
42.84h962.34±
41.79h973.38±
40.22h2841.58±
112.50d2550.23±
102.22de2269.65±
105.22ef2918.54±
116.30d2337.18±
90.65ef2468.77±
104.10def1730.82±
69.87g1384.08±
66.18g1506.05±
73.60g2285.55±
95.07f2243.61±
103.01f1713.34±
71.59g5882.81±
118.62a5245.45±
198.79b4264.19±
168.69cEUC
(g MSG/100 g)55.53±
5.59g48.96±
6.15g62.37±
7.02g266.54±
25.27cd247.09±
28.56d94.40±
9.87eg321.77±
30.86bc287.25±
27.41cd241.30±
27.35d106.58±
10.76efg58.61±
6.45g74.70±
6.47fg165.04±
14.95e121.71±
11.03efg140.99±
15.16ef493.97±
46.13a364.35±
32.87b265.83±
24.96cd注:鲜味氨基酸: Asp+Glu;甜味氨基酸:Ala+Gly+Ser+Thr+Pro;苦味氨基酸:Arg+His+Ile+Leu+Met+Phe+Trp+Val;无味氨基酸: Lys+Tyr+Cys;*代表必需氨基酸;同行不同小写字母表示差异显著(P<0.05)。 表 3 不同处理条件下羊肚菌提取液抗氧化能力对比
Table 3. The comparison of antioxidant abilities of Morchella esculenta extracts processed by different methods
DPPH自由基清除能力
(μmol AAE/mL)FRAP铁离子还原能力(μmol AAE/mL) ABTS阳离子自由基清除能力(μmol TE/mL) RT-P1 1974.03±61.54b 1471.95±89.33c 3.91±0.21b RT-P2 1661.94±27.04c 1388.97±89.68cd 3.53±0.14b RT-P3 1077.22±21.74ef 980.92±45.01ef 2.77±0.17c 70 ℃-P1 749.72±24.46g 804.94±33.67fgh 2.69±0.15c 70 ℃-P2 1005.97±20.17f 956.32±20.94efg 2.52±0.15c 70 ℃-P3 544.58±10.25h 541.84±26.22j 1.69±0.12d 90 ℃-P1 1010.55±22.20f 783.79±12.78ghi 2.73±0.16c 90 ℃-P2 1006.67±18.30f 944.37±48.68efg 2.96±0.21c 90 ℃-P3 464.03±10.14h 624.97±20.71ij 2.44±0.14c UT-P1 1351.81±15.38d 1434.02±64.23cd 5.12±0.24a UT-P2 772.78±72.13g 1425.63±73.22cd 3.63±0.21b UT-P3 547.78±24.48h 739.77±18.61hi 3.57±0.03b HG-P1 1276.94±15.34d 1294.02±64.18cd 4.04±0.04b HG-P2 1114.86±19.70e 1071.03±35.67e 2.99±0.12c HG-P3 833.61±18.44g 1081.15±41.10e 2.54±0.14c HHP-P1 2216.11±14.20a 2322.87±93.90a 5.25±0.28a HHP-P2 1943.61±22.45b 1906.67±49.58b 3.77±0.26b HHP-P3 772.78±10.44g 1282.64±61.43d 3.76±0.22b -
[1] 刘萍, 马渊浩, 赵永昌, 等. 羊肚菌单孢菌株的性亲和与营养体亲和特性[J]. 食用菌学报,2021,28(1):40−47. [LIU Ping, MA Yuanhao, ZHAO Yongchang, et al. Sexual and vegetative compatibility of single ascospore isolations in the genus Morchella[J]. Acta Edulis Fungi,2021,28(1):40−47.LIU Ping, MA Yanhao, ZHAO Yongchang, etal. Sexual and vegetative compatibility of single ascospore isolations in the genus Morchella[J]. Acta Edulis Fungi, 2021, 28(01): 40-47 [2] HE S, ZHAO K, MA L, et al. Effects of different cultivation material formulas on the growth and quality of Morchella spp.[J]. Saudi Journal of Biological Sciences,2018,25(4):719−723. doi: 10.1016/j.sjbs.2017.11.021 [3] YANG C, MENG Q, ZHOU X, et al. Separation and identification of chemical constituents of Morchellaconica isolated from Guizhou Province China[J]. Biochemical Systematics and Ecology,2019,86:103919. doi: 10.1016/j.bse.2019.103919 [4] 高娟, 杜佳馨, 吴限, 等. 羊肚菌酶解液制备美拉德反应肉味调味基料[J]. 食品科学,2020,41(24):242−250. [GAO Juan, DU Jiaxin, WU Xian, et al. Preparation of meaty flavoring base from enzymatic hydrolysate of morel mushroom by maillard reaction[J]. Food Science,2020,41(24):242−250. doi: 10.7506/spkx1002-6630-20191212-129GAO Juan, DU Jiaxin, WU Xian, et al. Preparation of meaty flavoring base from enzymatic hydrolysate of morel mushroom by Maillard reaction[J]. Food Science, 2020, 41(24): 242-250 doi: 10.7506/spkx1002-6630-20191212-129 [5] CAI Z N, LI W, MEHMOOD S, et al. Structural characterization, in vitro and in vivo antioxidant activities of a heteropolysaccharide from the fruiting bodies of Morchella esculenta[J]. Carbohydrate Polymers,2018,195:29−38. doi: 10.1016/j.carbpol.2018.04.069 [6] 任茜. 羊肚菌营养功能特性[J]. 中国食用菌,2020,39(9):212−215. [REN Qian. Nutritional functional characteristics of Morchella spp. and development of health products[J]. Edible Fungi of China,2020,39(9):212−215.REN Qian. Nutritional functional characteristics of Morchella spp. and development of health products[J]. Edible Fungi of China, 2020, 39(9): 212-215 [7] 张靖. 牛肝菌和羊肚菌复合水提取物对酒精性肝损伤保护作用的研究及口服液的制备[D]. 长春: 吉林大学, 2019: 21−23.ZHANG Jing. Study on the protective effect of boletus and Morchella compound water extract on alcoholic liver injury and preparation of oral liquid[D]. Changchun: Jilin University, 2019: 21−23. [8] 刘伟. 梯棱羊肚菌生长发育过程及羊肚菌属的组学研究[D]. 武汉: 华中农业大学, 2020: 1-9LIU Wei. Omics on the growth and development of Morchella importuna and the Morchella[D]. Wuhan: Huazhong Agricultural University, 2020: 1-9 [9] 张楠, 叶晶晶, 廖春华, 等. 羊肚菌菌柄营养成分的分析与评价[J]. 食品工业科技,2021,42(17):335−342. [ZHANG Nan, YE Jingjing, LIAO Chunhua, et al. Analysis and evaluation of nutritional components in stipe of Morchella esculenta[J]. Science and Technology of Food Industry,2021,42(17):335−342.ZHANG Nan, YE Jingjing, LIAO Chunhua, et al. Analysis and evaluation of nutritional components in stipe of Morchella esculenta[J]. Science and Technology of Food Industry, 2021, 42(17): 335-342. [10] 蒋方国, 凌云坤, 徐宏, 等. 响应面法优化羊肚菌鸡脯汤料包工艺[J]. 中国调味品,2021,46(3):91−94,99. [JIANG Fangguo, LIN Yunkun, XU Hong, et al. Optimization of the technology of Morchella and chicken breast soup package by response surface methodology[J]. China Condiment,2021,46(3):91−94,99. doi: 10.3969/j.issn.1000-9973.2021.03.018JIANG Fangguo, Lin Yunkun, XU Hong, et al. Optimization of the technology of Morchella and chicken breast soup package by response surface methodology[J]. China Condiment, 2021, 46(3): 91-94, 99. doi: 10.3969/j.issn.1000-9973.2021.03.018 [11] 徐宏, 邓杰, 凌云坤, 等. 羊肚菌猪骨汤制备工艺研究[J]. 中国调味品,2020,45(10):88−92. [XU Hong, DENG Jie, LING Yunkun, et al. Study on preparation technology of morels and pork bone soup[J]. China Condiment,2020,45(10):88−92. doi: 10.3969/j.issn.1000-9973.2020.10.019XU Hong, DENG Jie, Lin Yunkun, et al. Study on preparation technology of morels and pork bone soup[J]. China Condiment, 2020, 45(10): 88-92 doi: 10.3969/j.issn.1000-9973.2020.10.019 [12] BELUHAN S, RANOGAJEC A. Chemical composition and non-volatile components of Croatian wild edible mushrooms[J]. Food Chemistry,2011,124(3):1076−1082. doi: 10.1016/j.foodchem.2010.07.081 [13] YIN C, FAN X, ZHE F, et al. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms[J]. Journal of the Science of Food and Agriculture,2018,99(4):1691−1699. [14] ZHUANG K, WU N, WANG X, et al. Effects of 3 feeding modes on the volatile and nonvolatile compounds in the edible tissues of female Chinese mitten crab (Eriocheir sinensis)[J]. Journal of Food Science,2016,81(4-6):S968−S981. [15] LI B, KIMATU B M, PEI F, et al. Non-volatile flavour components in Lentinus edodes after hot water blanching and microwave blanching[J]. International Journal of Food Properties,2018,20(sup3):1−11. [16] HU S, FENG X, HUANG W, et al. Effects of drying methods on non-volatile taste components of Stropharia rugoso-annulata mushrooms[J]. LWT-Food Science and Technology,2020,127:109428. doi: 10.1016/j.lwt.2020.109428 [17] 卢琪, 薛淑静, 杨德, 等. 不同干燥条件下福白菊菊花茶风味品质的比较分析[J]. 食品科学,2020,41(20):249−255. [LU Qi, XUE Shujing, YANG De, et al. Comparative analysis of flavor quality of Chrysanthemum tea (Chrysanthemum morifolium cv. ‘Fubaiju’) processed by different drying methods[J]. Food Science,2020,41(20):249−255. doi: 10.7506/spkx1002-6630-20190823-249LU Qi, XUE Shujing, YANG De, et al. Comparative analysis of flavor quality of Chrysanthemum tea (Chrysanthemum morifolium cv. ‘Fubaiju’) processed by different drying methods[J]. Food Science, 2020, 41(20): 249-255 doi: 10.7506/spkx1002-6630-20190823-249 [18] LU Q, LÜ S, PENG Y, et al. Characterization of phenolics and antioxidant abilities of red navel orange “Cara Cara” harvested from five regions of China[J]. International Journal of Food Properties,2018,21(1):1107−1116. doi: 10.1080/10942912.2018.1485030 [19] QIN W, MUZAMMAL R, PENG D, et al. Antioxidant capacity and α-glucosidase inhibitory activity of leaf extracts from ten ramie cultivars[J]. Industrial Crops and Products,2018,122:430−437. doi: 10.1016/j.indcrop.2018.06.020 [20] LI Q, ZHANG H, CLAVER I P, et al. Effect of different cooking methods on the flavour constituents of mushroom (Agaricus bisporus (Lange) Sing) soup[J]. International Journal of Food Science & Technology,2011,46(5):1100−1108. [21] LUO D, WU J, MA Z, et al. Production of high sensory quality shiitake mushroom (Lentinus edodes) by pulsed air-impingement jet drying (AID) technique[J]. Food Chemistry,2021,341:128290. doi: 10.1016/j.foodchem.2020.128290 [22] 游兴勇, 许杨, 李燕萍. 食用菌非挥发性呈味物质的研究[J]. 中国调味品,2008(8):32−35,47. [YOU Xingyong, XU Yang, LI Yanping. The studies of nonvolatile taste compounds of edible fungi[J]. China Condiment,2008(8):32−35,47. doi: 10.3969/j.issn.1000-9973.2008.08.004YOU XINGyong, XU Yang, LI Yanping. The studies of nonvolatile taste compounds of edible fungi[J]. China Condiment, 2008(8): 32-35, 47. doi: 10.3969/j.issn.1000-9973.2008.08.004 [23] RAMOS P A, GARÍA C, RODRÍGUEZ C, et al. High hydrostatic pressure treatments trigger de novo carotenoid biosynthesis in papaya fruit (Carica papaya cv. Maradol)[J]. Food Chemistry,2019,277(30):362−372. [24] 范婷婷, 赵晓燕, 李晓贝, 等. 人工栽培和野生羊肚菌游离氨基酸主成分分析及综合评价[J]. 食品科学, 2022, 43(6): 295-302.FAN Tingting, ZHAO Xiaoyan, LI Xiaobei, et al. Principal component analysis and comprehensive evaluation of free amino acids between cultivated and wild Morchella[J]. Food Science, 2022, 43(6): 295-302. [25] WEN L, ZHEN G, YAN Y, et al. Non-volatile taste components of several cultivated mushrooms[J]. Food Chemistry,2014,143(15):427−431. [26] TIAN Y, ZHAO Y, HUANG J, et al. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms[J]. Food Chemistry,2016,197(15):714−722. [27] MILOEVI M D, MARINKOVI A D, PETROVI P, et al. Synthesis, characterization and SAR studies of bis (imino) pyridines as antioxidants, acetylcholinesterase inhibitors and antimicrobial agents[J]. Bioorganic Chemistry,2020,102:104073. doi: 10.1016/j.bioorg.2020.104073 [28] LI M, CHEN X, Deng J, et al. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn[J]. Food Chemistry,2020,332:127429. doi: 10.1016/j.foodchem.2020.127429 [29] KIM A, LEE K, RAHMAN M, et al. Thermal treatment of apple puree under oxygen-free condition: Effect on phenolic compounds, ascorbic acid, antioxidant activities, color, and enzyme activities[J]. Food Bioscience,2020,39:100802. -