Effect of Enzyme Extrusion on Structure and Physicochemical Properties of Wheat Starch
-
摘要: 本文旨在探究加酶挤压对小麦淀粉结构和理化性质的影响。分别设置浓度梯度为0%、0.1%、0.2%、0.5%、1%、2%的α-淀粉酶-小麦淀粉混合物样品,挤压处理后,利用扫描电镜(SEM)、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、快速粘度仪(RVA)等分析淀粉结构与理化性质的变化。结果表明:各处理组的堆积密度无显著差异(P>0.05);吸水指数与加酶量呈负相关,水合指数与加酶量呈正相关;挤压后淀粉糊化度均大幅度提高,接近完全糊化;挤压后淀粉的颗粒结构被完全破坏且加酶使得淀粉颗粒粒径更小;加酶挤压处理后相对结晶度降低,从原淀粉的17.52%降至10.29%(酶浓度2%);挤压处理后小麦淀粉的糊化焓均显著下降(P<0.05),挤压淀粉样品焓值最低,仅为0.24 J/g,加酶挤压淀粉的焓值高于挤压淀粉,随着加酶量的增加,淀粉的焓值上升至2.5 J/g左右;RVA曲线可明显看出处理组的粘度远低于原淀粉粘度,且加酶挤压样品粘度低于不加酶挤压粘度。本文探明了加酶挤压对淀粉结构和理化性质的作用规律,可为加酶挤压技术在淀粉基食品领域的应用提供理论指导。Abstract: This study aimed to investigate the effects of enzyme extrusion on the structural and physicochemical properties of wheat starch. The mixture of α-amylase (0%, 0.1%, 0.2%, 0.5%, 1% and 2%) and wheat starch were prepared and then extruded. After extrusion, the structural and physiochemical properties of wheat starch were analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometer (XRD), and rapid viscosity analyzer (RVA). The results showed that no significant difference in bulk density were observed among all treatments (P>0.05). With the increase of enzyme concentration, the water absorption index was decreased, and the hydration index was gradually increased. The gelatinization degree of starch was largely increased after extrusion, which indicated that the starch was almost completely gelatinized. SEM images suggested that the structure of starch granules was completely destroyed and the more extensive destruction was observed with the addition of enzyme. XRD patterns indicated that the relative crystallinity decreased from 17.52% of the native starch to 10.29% of the extruded sample with 2% enzyme. DSC results showed that the gelatinization enthalpy of wheat starch decreased significantly after extrusion (P<0.05). The lowest enthalpy was 0.24 J/g for extruded sample without α-amylase, while the enthalpy increased to about 2.5 J/g with the addition of α-amylase to 2%. This study explored the mechanism underlying the effect of enzyme extrusion on the structural and physicochemical properties of starch, which contributes to providing theoretical guides for the applications of enzyme extrusion in starch-based foods.
-
Key words:
- enzyme extrusion /
- wheat starch /
- structure /
- thermal properties /
- pasting properties
-
图 2 不同处理后小麦淀粉的扫描电镜图
Figure 2. SEM images of wheat starch under different treatment conditions
注:a1、b1、c1、d1、e1、f1、g1分别为1000×放大倍数下CK、ESS、0.1%EESS、0.2%EESS、0.5%EESS、1%EESS、2%EESS扫描电镜图;a2、b2、c2、d2、e2、f2、g2分别为5000×放大倍数下CK、ESS、0.1%EESS、0.2%EESS、0.5%EESS、1%EESS、2%EESS扫描电镜图;CK为原淀粉样品;ESS为挤压淀粉样品;EESS为加酶挤压淀粉样品。
表 1 不同处理条件下小麦淀粉糊化度和堆积密度
Table 1. Degree of gelatinization and bulk density of wheat starch under different treatment conditions
表 2 不同处理后小麦淀粉热性质参数
Table 2. Thermal parameters of wheat starch under different treatment conditions
样品 相对结晶度(%) T0(℃) Tp(℃) Tc(℃) ΔH(J/g) CK 17.52±1.31cd 57.35±0a 63.04±0.15a 76.60±0.13a 7.89±0.16d ESS 4.15±0.48a 73.78±0.60d 78.76±0.56d 86.31±0.55d 0.24±0.05a 0.1%EESS 14.42±0.99cd 70.89±0.10bc 74.57±0.03b 82.73±0.68bc 1.50±0.355b 0.2%EESS 13.62±0.48bc 70.42±0.35b 74.43±0.27b 82.27±0.22b 2.30±0.05c 0.5%EESS 14.18±1.61cd 70.04±0.27b 74.28±0.16b 82.94±0.34bc 2.59±0.17c 1%EESS 10.61±0.0132bc 70.57±0.20bc 74.81±0.17bc 83.09±0.86bc 2.55±0.03c 2%EESS 10.29±1.01b 71.47±0.26c 75.62±0.15c 84.26±0.81c 2.45±0.03c 注:T0为起始温度,Tp为峰值温度,Tc为终止温度,ΔH为糊化焓;CK为原淀粉样品,ESS为挤压淀粉样品,EESS为加酶挤压淀粉样品。 表 3 不同处理后小麦淀粉糊化特性参数
Table 3. Characteristics and parameters of wheat starch gelatinization after different treatments
峰值粘度(cP) 谷值粘度(cP) 崩解值(cP) 最终粘度(cP) 回生值(cP) 糊化温度(℃) CK 2505±4c 2218±17b 287±3b 2628.5±1.5b 410.5±15.5c 69.05±0.4b ESS 341±67b 77±16a 264±51b 255±15a 178±9b 49.9±0.15a 0.1%EESS 35±1a − 44±1a − 5.5±0.5a − 0.2%EESS 24.5±1.5a − 39.5±0.5a − 3±1a − 0.5%EESS 11±3a − 27.5±1.5a − 3.5±0.5a − 1%EESS 0a − 16.5±0.5a − 2±0a − 2%EESS − − 16±3a − 3.5±0.5a − 注:CK为原淀粉样品,ESS为挤压淀粉样品,EESS为加酶挤压淀粉样品。 -
[1] 刘少广. 预糊化小麦粉的特性及应用研究[D]. 武汉: 武汉工业学院, 2012.LIU S G. Study on characteristics and application of pre-gelatinized wheat flour[D]. Wuhan: Wuhan Institute of Technology, 2012. [2] 肖志刚, 邵晨, 杨柳, 等. 淀粉改性方法的研究现状及进展[J]. 农产品加工,2020(3):81−84,88. [XIAO Z G, SHAO C, YANG L, et al. Research status and progress trend of starch modification[J]. Farm Products Processing,2020(3):81−84,88.XIAO Z G, SHAO C, YANG L, et al. Research status and progress trend of starch modification[J]. Farm Products Processing, 2020(3): 81-84, 88. [3] SINGH J, KAUR L, MCCATHRY O J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review[J]. Food Hydrocolloids, 2007, 21: 1−22. [4] 张隋鑫, 曹勇, 许秀颖, 等. 预糊化淀粉的制备、性质及应用[J]. 食品科技,2019,44(3):252−255. [ZHANG S X, CAO Y, XU X Y, et al. Production, properties and applications of pre-gelatinazed starch[J]. Food Science and Technology,2019,44(3):252−255.ZHANG S X, CAO Y, XU X Y, et al. Production, properties and applications of pre-gelatinazed starch[J]. Food Science and Technology, 2019, 44(3): 252-255. [5] 金征宇, 李佳欣, 周星. 冷水可溶淀粉的物理法制备及应用研究进展[J]. 食品科学技术学报,2021,39(1):1−12. [JIN Z Y, LI J X, ZHOU X. Research progress on physical preparation and application of cold-water-soluble starch[J]. Journal of Food Science and Technology,2021,39(1):1−12. doi: 10.12301/j.issn.2095-6002.2021.01.001JIN Z Y, LI J X, ZHOU X. Research progress on physical preparation and application of cold-water-soluble starch[J]. Journal of Food Science and Technology, 2021, 39(1): 1-12. doi: 10.12301/j.issn.2095-6002.2021.01.001 [6] CAO Z Q, CAO Y M, CAO Z G, et al. The research progress of pre-gelatinized starch[J]. Popular Science and Technology,2016,18(1):31−34. [7] CHUANG G C C, YEH A I. Effect of screw profile on residence time distribution and starch gelatinization of rice flour duringsingle screw extrusion cooking[J]. Journal of Food Engineering,2004,63(1):21−31. doi: 10.1016/S0260-8774(03)00278-4 [8] MOSCICKI L. Extrusion cooking: Principles and practice[J]. Encyclopedia of Food and Health,2016:576−580. [9] FRANKLYN Z, JOHANNES B, LESLIE V, et al. Physical, chemical and nutritional characteristics of puffed quinoa[J]. International Journal of Food Science & Technology,2020,55(1):313−322. [10] TOBIAS A, MOHAMMAD R K, JONATHAN C, et al. Modification of poly (lactic) acid by reactive extrusion and its melt blending with acrylonitrile-butadiene-styrene[J]. Polymer International,2020,69(9):794−803. doi: 10.1002/pi.6014 [11] GOVINDASAMY S, CAMPANELLA O H, OATES C G. Enzymatic hydrolysis and saccharification optimisation of sago starch in a twin-screw extruder[J]. Journal of Food Engineering,1997,32:427−446. [12] LI J P, RASHED M M A, DENG L, et al. Thermostable and mesophilic alpha-amylase: Effects on wheat starch physicochemical properties and their applications in extruded noodles[J]. Journal of Cereal Science,2019,87:248−257. doi: 10.1016/j.jcs.2019.04.013 [13] MESA-STONESSTREET N J, ALAVIL S, GWIRTZ J. Extrusion-enzyme liquefaction as a method for producing sorghum protein concentrates[J]. Journal of Food Engineering,2012,108(2):365−375. [14] BANVILET G, GATT E, BELGACEM N, et al. Cellulose fibers deconstruction by twin-screw extrusion with in situ enzymatic hydrolysis via bioextrusion[J]. Bioresource Technology,2021:327. doi: 10.1016/j.biortech.2021.124819 [15] REINIKAINEN T, SUORTTI J, OLKKU, et al. Extrusion cooking in enzymatic liquefaction of wheat starch[J]. Starch-Stä rke,1986,38:20−26. [16] GOVINDASAMY S, CAMPANELLA O H, OATES C G. Enzymatic hydrolysis of sago starch in a twin-screw extruder[J]. Food Eng,1997,32:403−426. doi: 10.1016/S0260-8774(97)00017-4 [17] LI H, JIAO A, XU X, et al. Simultaneous saccharification and fermentation of broken rice: an enzymatic extrusion liquefaction pretreatment for Chinese rice wine production[J]. Bioprocess Biosyst Eng,2013,36:1141−1148. doi: 10.1007/s00449-012-0868-0 [18] 马永轩, 张名位, 张瑞芬, 等. 高温α-淀粉酶-挤压膨化耦合处理对全谷物糙米粉品质的影响[J]. 食品科学技术学报,2020,38(1):111−116. [MA Y X, ZHANG M W, ZHANG R F, et al. Effect of thermostable α-amylase assisted extrusion treatment on quality properties of whole brown rice flour[J]. Journal of Food Science and Technology,2020,38(1):111−116. doi: 10.3969/j.issn.2095-6002.2020.01.015MA Y X, ZHANG M X, ZHANG R F, et al. Effect of thermostable α-amylase assisted extrusion treatment on quality properties of whole brown rice flour[J]. Journal of Food Science and Technology, 2020, 38(1): 111-116. doi: 10.3969/j.issn.2095-6002.2020.01.015 [19] 刘磊, 邱婷婷, 赵志浩, 等. 预酶解-挤压膨化工艺改善玉米全粉冲调分散性[J]. 现代食品科技,2018,34(10):141−146, 170. [LIU L, QIU T T, ZHAO Z H, et al. Extrusion with enzyme pretreatment improves dispersibility of whole corn flour[J]. Modern Food Science and Technology,2018,34(10):141−146, 170.LIU L, QIU T T, ZHAO Z H, et al. Extrusion with enzyme pretreatment improves dispersibility of whole corn flour[J]. Modern Food Science and Technology, 2018, 34(10): 141-146, 170. [20] LI J P, JIAO A Q, RASHED M M A, et al. Effect of thermostable-amylase addition on producing the porous-structured noodles using extrusion treatment[J]. Journal of Food Science,2018,83(2):332−339. doi: 10.1111/1750-3841.14010 [21] 赵淑娜, 焦爱权, 杨月月, 等. 加酶挤压对大麦粉理化性质及全大麦啤酒酿造特性的影响[J]. 食品与发酵工业,2021,47(15):63−69. [ZHAO S N, JIAO A Q, YANG Y Y, et al. Effect of enzyme extrusion on characteristics of barley flour and whole-barley beer brewing[J]. Food and Fermentation Industries,2021,47(15):63−69.ZHAO S N, JIAO A Q, YANG Y Y, et al. Effect of enzyme extrusion on characteristics of barley flour and whole-barley beer brewing[J]. Food and Fermentation Industries, 201, 47(15): 63-69. [22] LI D, YANG N, ZHOU X, et al. Characterization of acid hydrolysis of granular potato starch under induced electric field[J]. Food Hydrocolloids,2017,71:198−206. [23] LI D, YANG N, JIN Y, et al. Changes in crystal structure and physicochemical properties of potato starch treated by induced electric field[J]. Carbohydrate Polymers,2016,153:535−541. [24] 中华人民共和国国家质量监督检验检疫局, 中国国家标准化管理委员会. GB/T 24853—2010 小麦、黑麦及其粉类和淀性测定快速粘度仪法[S]. 北京: 中国标准出版社, 2010.State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. GB/T 24853—2010 General pasting method for wheat or rye flour or starch-using the rapid visco analyzer[S]. Beijing: China Standards Press, 2010. [25] KUO C H, SHIEH C J, HUANG S M, et al. The effect of extrusion puffing on the physicochemical properties of brown rice used for saccharification and Chinese rice wine fermentation[J]. Food Hydrocolloids,2019,94:363−370. doi: 10.1016/j.foodhyd.2019.03.040 [26] BRYANT R J, KADAN R S, CHAMPAGNE E T, et al. Functional and digestive characteristics of extruded rice flour[J]. Cereal Chemistry,2001,78(2):131−137. doi: 10.1094/CCHEM.2001.78.2.131 [27] 徐恩波. 加酶挤压大米品质调控机理及其黄酒应用研究[D]. 无锡: 江南大学, 2019.XU E B. Regulation mechanism of enzymatically extruded rice quality and its application in Chinese rice wine[D]. Wuxi: Jiangnan University, 2019. [28] 谢天, 孙洪蕊, 康立宁, 等. 双螺杆挤压对玉米重组米理化特性及品质特性的影响[J]. 食品科学,2019,40(17):183−189. [XIE T, SUN H R, KANG L N, et al. Effect of twin-screw extrusion on physicochemical properties and qual characteristics of corn flour[J]. Food Science,2019,40(17):183−189. doi: 10.7506/spkx1002-6630-20180714-180XIE T, SUN H R, KANG L N, et al. Effect of twin-screw extrusion on physicochemical properties and qual characteristics of corn flour[J]. Food Science, 2019, 40(17): 183-189. doi: 10.7506/spkx1002-6630-20180714-180 [29] PUNIA S. Barley starch: Structure, properties and in vitro digestibility-a review[J]. International Journal of Biological Macromolecules,2020,155:868−875. doi: 10.1016/j.ijbiomac.2019.11.219 [30] 马成业, 范玉艳, 于双双, 等. 挤压剪切活化对添加耐高温α-淀粉酶脱胚玉米淀粉结构和理化特性的影响[J]. 食品科学,2018,39(15):31−37. [MA C Y, FAN Y Y, YU S S, et al. Physicochemical and structural properties of native, extruded and enzymatic extruded degerminated corn starch[J]. Food Science,2018,39(15):31−37. doi: 10.7506/spkx1002-6630-201815005MA C Y, FAN Y Y, YU S S, et al. Physicochemical and structural properties of native, extruded and enzymatic extruded degerminated corn starch[J]. Food Science, 2018, 39(15): 31-37. doi: 10.7506/spkx1002-6630-201815005 [31] CONTRERAS-GALLEGOS E, DOMÍNGUEZ-PACHECO F A, HERNÁNDEZ-AGUILAR C, et al. Study of thermal aural properties of starch granules from different maize genotypes[J]. Food Biophysics,2015,10(1):1−6. doi: 10.1007/s11483-014-9382-z [32] FROST K, KAMINSKI D, KIRWAN G, et al. Crystallinity and structure of starch using wide angle X-ray scattering[J]. Carbohydrate Polymers,2009,78(3):543−548. doi: 10.1016/j.carbpol.2009.05.018 [33] ZOBEL H F. Starch crystal transformations and their industrial importance[J]. Starch-Stä rke,1988,40(1):1−7. [34] WU Y, DU X, GE H, et al. Preparation of microporous starch by glucoamylase and ultrasound[J]. Starch-Stä rke,2011,63(4):217−225. [35] CHEN Y S, HUANG S R, TANG Z F, et al. Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase[J]. Carbohydrate Polymers,2011,85(1):272−275. doi: 10.1016/j.carbpol.2011.01.047 [36] 于双双, 张东亮, 陈善峰, 等. 脱胚玉米与加酶和不加酶挤压脱胚玉米淀粉颗粒结构和热特性研究[J]. 食品工业科技,2017,38(11):71−75. [YU S S, ZHANG D L, CHEN S F, et al. Research on granule structures and thermal properties of degerminated corn and extruded degerminated corn with enzyme and without enzyme[J]. Science and Technology of Food Industry,2017,38(11):71−75.YU S S, ZHANG D L, CHEN S F, et al. Research on granule structures and thermal properties of degerminated corn and extruded degerminated corn with enzyme and without enzyme[J]. Science and Technology of Food Industry, 2017, 38(11): 71-75. [37] ZHAO A Q, YU L, YANG M, et al. Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch[J]. Food Hydrocolloids,2018,83:465−472. doi: 10.1016/j.foodhyd.2018.04.041 [38] 吴文琪. 加酶挤压联合酶解法制备多孔淀粉及其在甜橙油粉末化中的应用[D]. 无锡: 江南大学, 2020.WU W Q. Preparation of porous starch by bioextrusion combined with enzymolysis and its application in microencapsulation of sweet orange oil[D]. Wuxi: Jiangnan University, 2020. [39] WANG S J, COPELAND L. Effect of acid hydrolysis on starch structure and functionality: A review[J]. Critical Reviews in Food Science and Nutrition,2015,55(8):1079−1095. [40] 方浩标, 郑经绍, 余宏达, 等. 挤压膨化对紫糙米粉营养品质及理化性质的影响[J]. 食品工业科技, 2021, 42(19): 70−77.FANG H B, ZHENG J S, YU H D, et al. Effect of extrusion process on the nutritious and physicochemical proper of purple brown rice flour [J]. Science and Technology of Food Industry, 2021, 42(19): 70−77. [41] MIAO M, ZHANG T, JIANG B. Characterisations of kabuli and desi chickpea starches cultivated in China[J]. Food Chemistry,2009,113(4):1025−1032. doi: 10.1016/j.foodchem.2008.08.056 [42] ZAVAREZE E D R, DIAS A R G. Impact of heat-moisture treatment and annealing in starches: A review[J]. Carbohydrate Polymers,2011,83(2):317−328. doi: 10.1016/j.carbpol.2010.08.064 [43] JONGSUTJSRITTAM O, CHAROENREIN S. The effect of moisture content on physicochemical properties of extruded waxy and non-waxy rice flour[J]. Carbohydrate Polymers,2014,114:133−140. doi: 10.1016/j.carbpol.2014.07.074 -