Research Progress in Regulation of the Gel Properties of Myofibrillar Protein based on Polysaccharides
-
摘要: 肌原纤维蛋白(myofibrillar protein,MP)作为肌肉中具有重要生物学功能的结构蛋白,能单独形成凝胶或作为凝胶的主要部分。MP的凝胶作用机理及凝胶特性已成为肉类科学研究的热点。明确各种添加剂对肉制品品质的影响,为开发健康的低脂肉制品提供依据。多糖具有良好的生物相容性且来源广泛、价格低廉,被广泛用于改善肉制品的品质。然而,目前多糖调节MP凝胶特性的研究并没有得到较为全面的归纳与总结。故本文概括了多糖的定义、分类以及功能特性,总结了多糖对MP凝胶特性的影响以及多糖在肉制品中的应用,以期为低脂肉制品的生产提供理论依据,并提出未来的研究方向。Abstract: Myofibrillar protein as a structural protein with important biological functions in muscle, can form a gel alone or as the main part of a gel. The gelling mechanism and gel properties of MP have attracted much attention in meat science research. It is important to clarify the effects of various additives on the quality of meat product, thus providing references for the development of healthy low-fat meat products. Polysaccharides are widely used to improve the quality of meat products because of their good biocompatibility, wide sources, and low prices. This review introduces the definition, classification and functional properties of polysaccharides and summarizes the effects of polysaccharides on the gel properties of MP. Furthermore, the applications of polysaccharides in meat products are discussed, which provides theoretical basis for the production of low-fat meat products. Finally, the prospects and challenges associated with low-fat meat products are proposed.
-
Key words:
- polysaccharide /
- myofibrillar protein /
- gel properties /
- meat products /
- research progress
-
表 1 多糖分类
Table 1. Classifications of polysaccharides
条件 分类 代表举例 参考文献 来源 动物多糖
植物多糖
微生物多糖糖原、甲壳素、肝素、壳聚糖、透明质酸、硫酸软骨素、酸性粘多糖
亚麻籽胶、魔芋葡甘聚糖
黄原胶、结冷胶、凝胶多糖、普鲁兰多糖、细菌纤维素[5-6] 分子量 高、中、低分子量
(或高、中、低粘度)多糖魔芋葡甘聚糖
海藻酸钠
葡聚糖[5] 功能性侧链基团 硫酸基多糖
氨基多糖
羧基多糖κ-卡拉胶
壳聚糖
海藻酸、仙人掌多糖[5-7] 电荷性质 中性或非离子型多糖
阴离子多糖
阳离子多糖魔芋葡甘聚糖、当归多糖、瓜尔豆胶、魔芋胶、罗望子胶
卡拉胶、黄原胶、结冷胶
壳聚糖[5-8] 分子链形态 线性多糖
非线性多糖魔芋葡甘聚糖、直链淀粉、可得然胶、结冷胶、卡拉胶
当归多糖、甘露聚糖、黄原胶[5-9] 组成成分 同多糖
杂多糖淀粉、β-葡聚糖
普甘露聚糖、果胶、亚麻籽胶[4-10] -
[1] 刘骞, 商旭, 姜帅, 等. 可得然胶与卡拉胶和黄原胶复配对肌原纤维蛋白功能特性的影响[J]. 食品研究与开发,2019,40(3):45−51. [LIU Q, SHANG X, JIANG S, et al. The effect of the compound of Kederan gum, carrageenan and xanthan gum on the functional properties of myofibril protein[J]. Food Research and Development,2019,40(3):45−51. doi: 10.3969/j.issn.1005-6521.2019.03.008LIU Q, SHANG X, JIANG S, et al. The effect of the compound of Kederan gum, carrageenan and xanthan gum on the functional properties of myofibril protein[J]. Food Research and Development, 2019, 40(3): 45-51. doi: 10.3969/j.issn.1005-6521.2019.03.008 [2] RAMÍREZ J A, URESTI R M, VELAZQUEZ G, et al. Food hydrocolloids as additives to improve the mechanical and functional properties of fish products: A review[J]. Food Hydrocolloids,2011,25(8):1842−1852. doi: 10.1016/j.foodhyd.2011.05.009 [3] HAN M, WANG P, XU X, et al. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics[J]. Food Research International,2014,62:1175−1182. doi: 10.1016/j.foodres.2014.05.062 [4] 聂少平, 唐炜, 殷军艺, 谢明勇. 食源性多糖结构和生理功能研究概述[J]. 中国食品学报,2018,18(12):1−12. [NIE S P, TANG W, YIN J Y, et al. Overview of the structure and physiological functions of food-borne polysaccharides[J]. Chinese Journal of Food Science,2018,18(12):1−12.NIE S P, TANG W, YIN J Y, et al. Overview of the structure and physiological functions of food-borne polysaccharides[J]. Chinese Journal of Food Science, 2018, 18(12): 1-12. [5] 肖雄. 线性与非线性多糖对鸡肉肌原纤维蛋白凝胶特性的影响[D]. 合肥: 合肥工业大学, 2015XIAO X. Effect of linear and nonlinear polysaccharides on the gel properties of chicken myofibril protein[D]. Hefei: Hefei University of Technology, 2015. [6] JIAN W, WU H, WU L, et al. Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein[J]. Carbohydrate Polymers,2016,150:21−31. doi: 10.1016/j.carbpol.2016.05.001 [7] YANG X, LI A, LI X, et al. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures[J]. Trends in Food Science & Technology, 2020. [8] 王未君. 多糖对瘦肉丸及肌原纤维蛋白特性影响的研究[D]. 无锡: 江南大学, 2014WANG W J. The effect of polysaccharides on the properties of lean meat balls and myofibril protein[D]. Wuxi: Jiangnan University, 2014. [9] RAMIREZ J A, BARRERA M, MORALES O G, et al. Effect of xanthan and locust bean gums on the gelling properties of myofibrillar protein[J]. Food Hydrocolloids,2002,16(1):11−16. doi: 10.1016/S0268-005X(01)00033-9 [10] FENG M, PAN L, YANG X, et al. Thermal gelling properties and mechanism of porcine myofibrillar protein containing flaxseed gum at different NaCl concentrations[J]. LWT,2018,87:361−367. doi: 10.1016/j.lwt.2017.09.009 [11] XU Y, DONG M, TANG C, et al. Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties[J]. LWT,2020,117:108664. doi: 10.1016/j.lwt.2019.108664 [12] BAKRY A M, HUANG J, ZHAI Y, et al. Myofibrillar protein with κ-or λ-carrageenans as novel shell materials for microencapsulation of tuna oil through complex coacervation[J]. Food Hydrocolloids,2019,96:43−53. doi: 10.1016/j.foodhyd.2019.04.070 [13] ZHAO N, ZOU H, SUN S, et al. The interaction between sodium alginate and myofibrillar proteins: The rheological and emulsifying properties of their mixture[J]. International Journal of Biological Macromolecules,2020,161:1545−1551. doi: 10.1016/j.ijbiomac.2020.08.025 [14] 周凤超, 陈伟娇, 辜银环, 等. 多糖替代动物脂肪与肌原纤维蛋白相互作用的研究现状[J]. 食品与发酵工业,2020,46(14):283−288. [ZHOU F C, CHEN W J, GU Y H, et al. Research status of the interaction between polysaccharides replacing animal fat and myofibril protein[J]. Food and Fermentation Industries,2020,46(14):283−288.ZHOU F C, CHEN W J, GU Y H, et al. Research status of the interaction between polysaccharides replacing animal fat and myofibril protein[J]. Food and Fermentation Industries, 2020, 46(14): 283-288. [15] 姚静. 海藻酸钠分子量对肌原纤维蛋白凝胶保水的影响及机制[D]. 合肥: 合肥工业大学, 2016YAO J. The effect of sodium alginate molecular weight on the water retention of myofibrillar protein gel and its mechanism[D]. Hefei: Hefei University of Technology, 2016. [16] CAO C, FENG Y, KONG B, et al. Textural and gel properties of frankfurters as influenced by various κ-carrageenan incorporation methods[J]. Meat Science,2021,176:108483. doi: 10.1016/j.meatsci.2021.108483 [17] MAO L, WU T. Gelling properties and lipid oxidation of kamaboko gels from grass carp (Ctenopharyngodon idellus) influenced by chitosan[J]. Journal of Food Engineering,2007,82(2):128−134. doi: 10.1016/j.jfoodeng.2007.01.015 [18] LI X, XIA W. Effects of chitosan on the gel properties of salt-soluble meat proteins from silver carp[J]. Carbohydrate Polymers,2010,82(3):958−964. doi: 10.1016/j.carbpol.2010.06.026 [19] 王芝妍, 周果, 杨文鸽, 等. 添加剂对秘鲁鱿鱼肌原纤维蛋白热诱导凝胶特性的影响[J]. 核农学报,2016,30(8):1568−1576. [WANG Z Y, ZHOU G, YANG W G, et al. Effects of additives on thermally induced gel properties of Peruvian squid myofibrillar protein[J]. Acta Nuclear Agriculture,2016,30(8):1568−1576. doi: 10.11869/j.issn.100-8551.2016.08.1568WANG Z Y, ZHOU G, YANG W G, et al. Effects of additives on thermally induced gel properties of Peruvian squid myofibrillar protein[J]. Acta Nuclear Agriculture, 2016, 30(8): 1568-1576. doi: 10.11869/j.issn.100-8551.2016.08.1568 [20] 李玮, 胡勇, 周梦舟, 等. 水溶性壳聚糖的生物活性在水产品产业中应用的研究进展[J]. 农产品加工,2018(14):52−55. [LI W, HU Y, ZHOU M Z, et al. Research progress on the biological activity of water-soluble chitosan in the aquatic product industry[J]. Agricultural Products Processing,2018(14):52−55.LI W, HU Y, ZHOU M Z, et al. Research progress on the biological activity of water-soluble chitosan in the aquatic product industry[J]. Agricultural Products Processing, 2018(14): 52-55. [21] BENJAKUL S, VISESSANGUAN W, PHATCHRAT S, et al. Chitosan affects transglutaminase‐induced surimi gelation[J]. Journal of Food Biochemistry,2003,27(1):53−66. doi: 10.1111/j.1745-4514.2003.tb00266.x [22] ZHOU Y, CHEN C, CHEN X, et al. Contribution of three ionic types of polysaccharides to the thermal gelling properties of chicken breast myosin[J]. Journal of Agricultural and Food Chemistry,2014,62(12):2655−2662. doi: 10.1021/jf405381z [23] 余霞. 三种不同离子多糖研究进展[J]. 现代食品,2019(14):91−93. [YU X. Research progress of three different ion polysaccharides[J]. Modern Food,2019(14):91−93.YU X. Research progress of three different ion polysaccharides[J]. Modern Food, 2019(14): 91-93. [24] 姚静. 海藻酸钠分子量对肌原纤维蛋白凝胶保水的影响及机制[D]. 合肥: 合肥工业大学, 2016YAO J. The effect of sodium alginate molecular weight on the water retention of myofibrillar gel and its mechanism[D]. Hefei: Hefei University of Technology, 2016. [25] 姜帅, 曹传爱, 康辉, 等. 燕麦β-葡聚糖对肌原纤维蛋白乳化和凝胶特性的影响[J]. 食品科学技术学报,2019,37(5):32−41. [JIANG S, CAO C A, KANG H, et al. The effect of oat β-glucan on the emulsification and gel properties of myofibril protein[J]. Journal of Food Science and Technology,2019,37(5):32−41. doi: 10.3969/j.issn.2095-6002.2019.05.005JIANG S, CAO C A, KANG H, et al. The effect of oat β-glucan on the emulsification and gel properties of myofibril protein[J]. Journal of Food Science and Technology, 2019, 37(5): 32-41. doi: 10.3969/j.issn.2095-6002.2019.05.005 [26] 冯美琴, 刘雯燕, 孙健, 等. 不同NaCl浓度条件下亚麻籽胶对肌原纤维蛋白凝胶作用力及乳化特性的影响[J]. 食品科学,2018,39(22):26−31. [FENG M Q, LIU W Y, SUN J, et al. Effects of linseed gum on myofibril protein gel strength and emulsification properties under different NaCl concentrations[J]. Food Science,2018,39(22):26−31. doi: 10.7506/spkx1002-6630-201822005FENG M Q, LIU W Y, SUN J, et al. Effects of linseed gum on myofibril protein gel strength and emulsification properties under different NaCl concentrations[J]. Food Science, 2018, 39(22): 26-31 doi: 10.7506/spkx1002-6630-201822005 [27] 潘丽华, 冯美琴, 孙健, 等. 不同温度下亚麻籽胶对肌原纤维蛋白凝胶特性的影响及机制[J]. 食品科学,2016,37(9):1−6. [PAN L H, FENG M Q, SUN J, et al. The effect and mechanism of flaxseed gum on myofibril protein gel properties at different temperatures[J]. Food Science,2016,37(9):1−6. doi: 10.7506/spkx1002-6630-201609001PAN L H, FENG M Q, SUN J, et al. The effect and mechanism of flaxseed gum on myofibril protein gel properties at different temperatures[J]. Food Science, 2016, 37(9): 1-6. doi: 10.7506/spkx1002-6630-201609001 [28] 刘旺. 超高压条件下亚麻籽胶对猪肉肌原纤维蛋白凝胶特性的影响[D]. 南京: 南京农业大学, 2019LIU W. The effect of linseed glue on the gel properties of pork myofibril protein under ultra-high pressure[D]. Nanjing: Nanjing Agricultural University, 2019. [29] 潘丽华. 不同理化条件下, 亚麻籽胶对肌原纤维蛋白凝胶特性的影响[D]. 南京: 南京农业大学, 2016PAN L H. The effect of flaxseed gum on the gel properties of myofibrillar protein under different physical and chemical conditions[D]. Nanjing: Nanjing Agricultural University, 2016. [30] 刘雯燕. 亚麻籽胶对糜类肉制品乳化凝胶特性的影响[D]. 南京: 南京农业大学, 2018LIU W Y. The effect of flaxseed gum on emulsified gel properties of minced meat products[D]. Nanjing: Nanjing Agricultural University, 2018. [31] 贾娜, 陈倩, 韩齐, 等. 食用胶对猪肉肌原纤维蛋白功能特性的影响[J]. 食品工业科技,2013,34(23):282−285. [JIA N, CHEN Q, HAN Q, et al. The effect of edible glue on the functional properties of pork myofibril protein[J]. Science and Technology of Food Industry,2013,34(23):282−285.JIA N, CHEN Q, HAN Q, et al. The effect of edible glue on the functional properties of pork myofibril protein[J]. Science and Technology of Food Industry, 2013, 34(23): 282-285. [32] 王诗萌, 张坤生, 任云霞. 食用胶对虾蛄中磷酸化肌原纤维蛋白凝胶特性的影响[J]. 食品科学,2016,37(9):56−60. [WANG S M, ZHANG K S, REN Y X. The effect of edible gum on the gel properties of phosphorylated myofibrillar protein in mantis shrimp[J]. Food Science,2016,37(9):56−60. doi: 10.7506/spkx1002-6630-201609011WANG S M, ZHANG K S, REN Y X. The effect of edible gum on the gel properties of phosphorylated myofibrillar protein in mantis shrimp[J]. Food Science, 2016, 37(9): 56-60. doi: 10.7506/spkx1002-6630-201609011 [33] MUDGIL D, BARAK S, PATEL A, et al. Partially hydrolyzed guar gum as a potential prebiotic source[J]. International Journal of Biological Macromolecules,2018,112:207−210. doi: 10.1016/j.ijbiomac.2018.01.164 [34] 吴鹏. 菊粉和海藻糖对虾蛄磷酸化肌原纤维蛋白特性的影响及在虾肉丸中的应用[D]. 天津: 天津商业大学, 2018WU P. The effect of inulin and trehalose on the properties of phosphorylated myofibrillar protein in mantis shrimp and its application in shrimp meatballs[D]. Tianjin: Tianjin University of Commerce, 2018. [35] 计红芳, 李莎莎, 王雪菲, 等. 天然菊粉对鸡肉肌原纤维蛋白凝胶特性的影响[J]. 中国食品添加剂,2019,30(2):124−130. [JI H F, LI S S, WANG X F, et al. The effect of natural inulin on chicken myofibril protein gel properties[J]. China Food Additives,2019,30(2):124−130. doi: 10.3969/j.issn.1006-2513.2019.02.012JI H F, LI S S, WANG X F, et al. The effect of natural inulin on chicken myofibril protein gel properties[J]. China Food Additives, 2019, 30(2): 124-130. doi: 10.3969/j.issn.1006-2513.2019.02.012 [36] GAO T, ZHAO X, LI R, et al. Synergistic effects of polysaccharide addition-ultrasound treatment on the Emulsified properties of low-salt myofibrillar protein[J]. Food Hydrocolloids,2021:107143. [37] ZHOU Y, DAI H, MA L, et al. Effect and mechanism of psyllium husk (Plantago ovata) on myofibrillar protein gelation[J]. LWT,2021,138:110651. doi: 10.1016/j.lwt.2020.110651 [38] 张子木, 罗凯, 黄秀芳. 植物多糖改性研究进展[J]. 山东化工,2021,50(9):77−79,101. [ZHANG Z M, LUO K, HUANG X F. Research progress on modification of plant polysaccharides[J]. Shandong Chemical Industry,2021,50(9):77−79,101. doi: 10.3969/j.issn.1008-021X.2021.09.033ZHANG Z M, LUO K, HUANG X F. Research progress on modification of plant polysaccharides[J]. Shandong Chemical Industry, 2021, 50(9): 77-79, 101. doi: 10.3969/j.issn.1008-021X.2021.09.033 [39] 申林卉, 刘丽侠, 陈冠, 等. 多糖化学结构修饰方法的研究进展[J]. 药物评价研究,2013,36(6):465−468. [SHEN L H, LIU L X, CHEN G, et al. Research progress of polysaccharide chemical structure modification methods[J]. Drug Evaluation Research,2013,36(6):465−468.SHEN L H, LIU L X, CHEN G, et al. Research progress of polysaccharide chemical structure modification methods[J]. Drug Evaluation Research, 2013, 36(6): 465-468. [40] 胡方洋, 张坤生, 陈金玉, 等. 玉米抗性淀粉的制备及其对肌原纤维蛋白凝胶特性的影响[J]. 食品研究与开发,2021,42(7):1−6. [HU F Y, ZHANG K S, CHEN J Y, et al. Preparation of corn resistant starch and its effect on myofibril protein gel properties[J]. Food Research and Development,2021,42(7):1−6.HU F Y, ZHANG K S, CHEN J Y, et al. Preparation of corn resistant starch and its effect on myofibril protein gel properties[J]. Food Research and Development, 2021, 42(7): 1-6. [41] FAN M, HUANG Q, ZHONG S, et al. Gel properties of myofibrillar protein as affected by gelatinization and retrogradation behaviors of modified starches with different crosslinking and acetylation degrees[J]. Food Hydrocolloids,2019,96:604−616. doi: 10.1016/j.foodhyd.2019.05.045 [42] 庄昕波, 陈银基, 周光宏. 改性甘蔗膳食纤维对猪肉肌原纤维蛋白凝胶特性的影响[J]. 中国农业科学,2021,54(15):3320−3330. [ZHUANG X B, CHEN Y J, ZHOU G H. The effect of modified sugarcane dietary fiber on the gel properties of pork myofibril protein[J]. Chinese Journal of Agricultural Sciences,2021,54(15):3320−3330. doi: 10.3864/j.issn.0578-1752.2021.15.015ZHUANG X B, CHEN Y J, ZHOU G H. The effect of modified sugarcane dietary fiber on the gel properties of pork myofibril protein[J]. Chinese Journal of Agricultural Sciences, 2021, 54(15): 3320-3330. doi: 10.3864/j.issn.0578-1752.2021.15.015 [43] PAN S, WU S. Effect of chitooligosaccharides on the denaturation of weever myofibrillar protein during frozen storage[J]. International Journal of Biological Macromolecules,2014,65:549−552. doi: 10.1016/j.ijbiomac.2014.01.074 [44] SUN Y, ZHANG M, BHANDARI B, et al. Ultrasound treatment of frozen crayfish with chitosan Nano-composite water-retaining agent: Influence on cryopreservation and storage qualities[J]. Food Research International,2019,126:108670. doi: 10.1016/j.foodres.2019.108670 [45] ZHANG B, WU H, YANG H, et al. Cryoprotective roles of trehalose and alginate oligosaccharides during frozen storage of peeled shrimp (Litopenaeus vannamei)[J]. Food Chemistry,2017,228:257−264. doi: 10.1016/j.foodchem.2017.01.124 [46] DU H, LIU C, UNSALAN O, et al. Development and characterization of fish myofibrillar protein/chitosan/rosemary extract composite edible films and the improvement of lipid oxidation stability during the grass carp fillets storage[J]. International Journal of Biological Macromolecules,2021,184:463−475. doi: 10.1016/j.ijbiomac.2021.06.121 [47] ZHANG B, FANG C, HAO G, et al. Effect of kappa-carrageenan oligosaccharides on myofibrillar protein oxidation in peeled shrimp (Litopenaeus vannamei) during long-term frozen storage[J]. Food chemistry,2018,245:254−261. doi: 10.1016/j.foodchem.2017.10.112 [48] NISHIMURA K, SUZUKI M, SAEKI H. Glucose-conjugated chicken myofibrillar proteins derived from random-centroid optimization present potent hydroxyl radical scavenging activity[J]. Bioscience, Biotechnology, and Biochemistry,2019,83(12):2307−2317. doi: 10.1080/09168451.2019.1662276 [49] BATISTA J T S, ARAÚJO C S, JOELE M R S P, et al. Study of the effect of the chitosan use on the properties of biodegradable films of myofibrillar proteins of fish residues using response surface methodology[J]. Food Packaging and Shelf Life,2019,20:100306. doi: 10.1016/j.fpsl.2019.100306 [50] ZHAO Y, HOU Q, ZHUANG X, et al. Effect of regenerated cellulose fiber on the physicochemical properties and sensory characteristics of fat-reduced emulsified sausage[J]. LWT,2018,97:157−163. doi: 10.1016/j.lwt.2018.06.053 [51] 张风雪. 亚麻籽胶对儿茶素-肌原纤维蛋白互作的抑制作用及乳化凝胶特性的影响[D]. 锦州: 渤海大学, 2019.ZHANG F X. The inhibitory effect of linseed gum on catechin-myofibrillar protein interaction and the effect of emulsified gel properties[D]. Jinzhou: Bohai University, 2019. [52] 王家豪. 淀粉基皮克林乳液特性及其对肉蛋白乳化特性和凝胶特性的影响研究[D]. 扬州: 扬州大学, 2019WANG J H. Study on the properties of starch-based pickering emulsion and its effect on the emulsification and gel properties of meat protein[D]. Yangzhou: Yangzhou University, 2019. -