• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

槲皮素、芦丁与大豆分离蛋白非共价作用机制及其功能性和消化性研究

赵钜阳 袁惠萍 孙昕萌 金聪

赵钜阳,袁惠萍,孙昕萌,等. 槲皮素、芦丁与大豆分离蛋白非共价作用机制及其功能性和消化性研究[J]. 食品工业科技,2022,43(15):73−80. doi:  10.13386/j.issn1002-0306.2021100103
引用本文: 赵钜阳,袁惠萍,孙昕萌,等. 槲皮素、芦丁与大豆分离蛋白非共价作用机制及其功能性和消化性研究[J]. 食品工业科技,2022,43(15):73−80. doi:  10.13386/j.issn1002-0306.2021100103
ZHAO Juyang, YUAN Huiping, SUN Xinmeng, et al. The Effect of Non-covalent Interaction of Soy Protein Isolate with Quercetin and Rutin on Functional Properties and in Vitro Digestion Characteristics[J]. Science and Technology of Food Industry, 2022, 43(15): 73−80. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021100103
Citation: ZHAO Juyang, YUAN Huiping, SUN Xinmeng, et al. The Effect of Non-covalent Interaction of Soy Protein Isolate with Quercetin and Rutin on Functional Properties and in Vitro Digestion Characteristics[J]. Science and Technology of Food Industry, 2022, 43(15): 73−80. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021100103

槲皮素、芦丁与大豆分离蛋白非共价作用机制及其功能性和消化性研究

doi: 10.13386/j.issn1002-0306.2021100103
基金项目: 黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2020213);哈尔滨商业大学“青年创新人才”支持计划项目(2019CX23);哈尔滨商业大学博士科研启动项目(2019DS60);烹饪科学四川省高等学校重点实验室资助项目(PRKX201901)。
详细信息
    作者简介:

    赵钜阳(1987−),女,博士,副教授,研究方向:大豆蛋白加工,烹饪科学,E-mail:zhaojuyang1987@163.com

    通讯作者:

    赵钜阳(1987−),女,博士,副教授,研究方向:大豆蛋白加工,烹饪科学,E-mail:zhaojuyang1987@163.com

  • 中图分类号: TS201.2

The Effect of Non-covalent Interaction of Soy Protein Isolate with Quercetin and Rutin on Functional Properties and in Vitro Digestion Characteristics

  • 摘要: 本文分析了槲皮素-大豆分离蛋白与芦丁-大豆分离蛋白复合物功能性(溶解性、乳化性、凝胶性)和消化性的变化,并利用紫外可见光谱法、荧光光谱法研究互作机理,解析了其荧光淬灭类型、结合位点数以及热力学参数。结果发现,两种黄酮均可提高SPI的功能性质,当槲皮素与芦丁添加量分别为8%时,SPI凝胶硬度可分别提高23.23%及187.18%;随着槲皮素添加量的增加,SPI 的 EAI、 ESI 和溶解性先增加后趋于平缓,添加量为6%和4%时,乳化活性和溶解性分别达到最高,与SPI相比,分别提高 20.84%和 10.06%;随着芦丁添加量的增加,SPI 的 EAI、 ESI 和溶解性先增加后略有下降,在添加量为4%和6%时,乳化活性和溶解性分别达到最高,与SPI相比,分别提高26.17%和19.27%。此外,槲皮素、芦丁分别与SPI相互作用后还可提高蛋白的生物利用度,进一步研究两种黄酮多酚与SPI互作机制表明,两种互作复合物的荧光光谱均发生蓝移现象,槲皮素、芦丁与SPI自发结合,并主要通过氢键和范德华力方式作用,其中槲皮素、芦丁与SPI互作机制分别为动态淬灭及静态淬灭。
  • 图  1  槲皮素-SPI复合物和芦丁-SPI复合物中蛋白的溶解度

    Figure  1.  The solubility of SPI in quercetin-SPI complexes and rutin-SPI complexes

    注:不同字母表示同一指标差异显著(P<0.05),图2图3同。

    图  2  槲皮素-SPI复合物和芦丁-SPI复合物中蛋白的乳化活性及乳化稳定性

    Figure  2.  The emulsifying activity and emulsifying stability of SPI in quercetin-SPI complexes and rutin-SPI complexes

    图  3  槲皮素-SPI复合物和芦丁-SPI复合物中蛋白的凝胶硬度

    Figure  3.  The gel hardness of SPI in quercetin-SPI complexes and rutin-SPI complexes

    图  4  槲皮素-SPI复合物和芦丁-SPI复合物中蛋白的胃肠消化

    Figure  4.  The gastrointestinal digestion of SPI in quercetin-SPI complexes and rutin-SPI complexes

    注:a:槲皮素;b:芦丁;0~120 min为胃消化阶段,120~240 min为小肠消化阶段。

    图  5  槲皮素、芦丁不同添加量对大豆分离蛋白紫外可见光谱的影响

    Figure  5.  The effect of quercetin, rutin on the UV-Vis spectra of soy protein isolate

    注:箭头的顺序指在220 nm 下吸收峰的顺序;a:槲皮素;b:芦丁。

    图  6  槲皮素、芦丁不同添加量对大豆分离蛋白荧光光谱及Stern-Volmer图的影响

    Figure  6.  The effect of quercetin, rutin on the fluorescence spectrum and Stern-Volmer plot of soy protein isolate

    注:a:槲皮素293 K;b:槲皮素310 K;c:芦丁293 K;d:芦丁310 K;e:槲皮素Stern-Volmer图;f:芦丁的Stern-Volmer图。

    表  1  槲皮素、芦丁与SPI反应过程淬灭常数及热力学参数信息

    Table  1.   The quenching constants and thermodynamic parameters of quercetin, rutin and SPI reaction

    黄酮温度
    (K)
    ksv
    (102
    L/mol)
    kq
    (1010 L/mol/s)
    RKb
    (L/mol)
    nΔH
    (kJ/mol)
    ΔS
    (J/mol/K)
    槲皮素2931.841.840.9845206.871.0317−82.19−4.27
    槲皮素3101.871.870.9993242.161.0473
    芦丁2933.723.720.9953307.750.9613−18.93−0.68
    芦丁3103.293.290.9961347.141.0155
    下载: 导出CSV
  • [1] FRAGA C G, CROFT K D, KENNEDY D O, et al. The effects of polyphenols and other bioactives on human health[J]. Food Function,2019,10(2):514−528. doi:  10.1039/C8FO01997E
    [2] XIE Y, CHEN J, XIAO A P, et al. Antibacterial activity of polyphenols: Structure-activity relationship and influence of hyperglycemic condition[J]. Molecules,2017,22(11):1913. doi:  10.3390/molecules22111913
    [3] LEPHART E D. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanism[J]. Ageing Reserch Reviews,2016,31:36−54. doi:  10.1016/j.arr.2016.08.001
    [4] KHAN N, MUKHTAR H. Tea polyphenols in promotion of human health[J]. Nutrients,2018,11(1):39. doi:  10.3390/nu11010039
    [5] BOURVELLEC C L, RENARD G C. Interactions between polyphenols and macromolecules: quantification methods and mechanisms[J]. Critical Reviews in Food Science and Nutrition,2012,52(3):213−248. doi:  10.1080/10408398.2010.499808
    [6] HARSHADRAI M R, DÖRTE C, SASCHA R, et al. Interactions of different phenolic acids and flavonoids with soy proteins[J]. International Journal of Biological Macromolecules,2002,30(3):137−150.
    [7] JIA Z, ZHENG M, TAO F, et al. Effect of covalent modification by (-)-epigallocatechin-3-gallate on physicochemical and functional properties of whey protein isolate[J]. LWT-Food Science and Technology,2016,66:305−310. doi:  10.1016/j.lwt.2015.10.054
    [8] 裘乐芸, 邢倩, 邓泽元, 等. 植物多酚与鲢鱼肌球蛋白相互作用及其对肌原纤维蛋白结构和凝胶形成的影响[J]. 中国食品学报,2021,21(5):48−56. [QIU L Y, XING Q, DENG Z Y, et al. Interaction of plant polyphenols with silver carp myosin and its effect on myofibril protein structure and gel formation[J]. Chinese Journal of Food Science,2021,21(5):48−56.

    QIU L Y, XING Q, DENG Z Y, et al. Interaction of plant polyphenols with silver carp myosin and its effect on myofibril protein structure and gel formation[J]. Chinese Journal of Food Science, 2021, 21(5): 48-56.
    [9] PETZKE K J, SCHUPPE S, ROHN S, et al. Chlorogenic acid moderately decreases the quality of whey proteins in rats[J]. Journal of Agricultural and Food Chemistry,2005,53(9):3714−3720. doi:  10.1021/jf048186z
    [10] 刘勤勤. 豆奶茶的制备、特性及机理研究[D]. 无锡: 江南大学, 2015.

    LIU Q Q. Study on preparation, characteristics and mechanism of soybean milk tea[D]. Wuxi: Jiangnan University, 2015
    [11] SPERONI F, ANON R C, LAMBALLERIE R D. Effects of calcium and high pressure on soybean proteins: A calorimetric study[J]. Food Research International,2010,43(5):1347−1355. doi:  10.1016/j.foodres.2010.03.022
    [12] ZHOU S D, LIN Y F, XU X, et al. Effect of non-covalent and covalent complexation of (-)-epigallocatechin gallate with soybean protein isolate on protein structure and in vitro digestion characteristics[J]. Food Chemistry,2020,309:1−10.
    [13] NAISARG P, SIDDHARTH J, KUAN Y W, et al. Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate[J]. Journal of Colloid and Interface Science,2017,488:1−16. doi:  10.1016/j.jcis.2016.10.085
    [14] PAN Y, XIE Q T, ZHU J, et al. Study on the fabrication andin vitro digestion behavior of curcumin-loaded emulsions stabilized by succinylated whey protein hydrolysates[J]. Food Chemistry,2019,287:76−84. doi:  10.1016/j.foodchem.2019.02.047
    [15] ZOU Y, GUO J, YIN S W, et al. Pickering emulsion gels prepared by hydrogen-bonded Zein/Tannic acid complex colloidal particles[J]. Journal of Agricultural and Food Chemistry,2015,63(33):1−10.
    [16] BRODKORB A, EGGER L, ALMINGER M, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion[J]. Nature Protocols,2019,14(4):991−1014. doi:  10.1038/s41596-018-0119-1
    [17] MAO Y, MCCLEMENTS D J. Influence of electrostatic heteroaggregation of lipid droplets on their stability and digestibility under simulated gastrointestinal conditions[J]. Food and Function,2012,3(10):1025−1034. doi:  10.1039/c2fo30108c
    [18] CHEN Z Q, WANG C, GAO X, et al. Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts[J]. Food Chemistry,2019,271:266−273. doi:  10.1016/j.foodchem.2018.07.170
    [19] 张传英, 彭鑫, 饶恒军, 等. 丹酚酸B与牛血清白蛋白相互作用的光谱学研究[J]. 光谱学与光谱分析,2021,41(6):1701−1707. [ZHANG C Y, PENG X, RAO H J, et al. Spectroscopic study on the interaction between salvianolic acid B and bovine serum albumin[J]. Spectroscopy and Spectral Analysis,2021,41(6):1701−1707.

    ZHANG C Y, PENG X, RAO H J, et al. Spectroscopic study on the interaction between salvianolic acid B and bovine serum albumin[J]. Spectroscopy and spectral analysis, 2021, 41 (6): 1701-1707.
    [20] WEI Z H, YANG W, FAN R, et al. Evaluation of structural and functional properties of protein-EGCG complexes and their ability of stabilizing a model β-carotene emulsion[J]. Food Hydrocolloids,2015,45:337−350. doi:  10.1016/j.foodhyd.2014.12.008
    [21] 贾娜, 孙嘉, 刘丹, 等. 槲皮素对氧化条件下猪肉肌原纤维蛋白结构及凝胶特性的影响[J]. 食品科学,2021,42(10):45−51. [JIA N, SUN J, LIU D, et al. The effect of quercetin on the structure and gel properties of pork myofibril protein under oxidative conditions[J]. Food Science,2021,42(10):45−51. doi:  10.7506/spkx1002-6630-20191103-021

    JIA N, SUN J, LIU D, et al. The effect of quercetin on the structure and gel properties of pork myofibril protein under oxidative conditions[J]. Food Science, 2021, 42(10): 45-51 . doi:  10.7506/spkx1002-6630-20191103-021
    [22] 胡思. 茶多酚与面筋蛋白相互作用对生鲜面品质影响的研究[D]. 郑州: 河南工业大学, 2016.

    HU S. Study on the effect of interaction between tea polyphenols and gluten protein on the quality of fresh noodles[D]. Zhengzhou: Henan University of Technology, 2016.
    [23] THUMMANOON P, SOOTTAWAT B, SUTTIRUG P. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein[J]. International Journal of Biological Macromolecules,2012,51(5):774−782. doi:  10.1016/j.ijbiomac.2012.07.010
    [24] 许杨杨. 大豆皂苷-蛋白W/O/W型双重乳液的构建及其稳定性研究[D]. 渤海: 渤海大学, 2021.

    XU Y Y. Construction and stability study of soybean saponin-protein W/O/W double emulsion[D]. Bohai: Bohai University, 2021.
    [25] 孙迪. 不同脂肪对肌原纤维蛋白乳化液稳定性及肉糜凝胶特性的影响[D]. 渤海: 渤海大学, 2019.

    SUN D. The effect of different fats on the stability of myofibrillar protein emulsion and the properties of meat emulsion[D]. Bohai: Bohai University, 2019.
    [26] LI T, WANG L, CHEN Z X, et al. Functional properties and structural changes of rice proteins with anthocyanins complexation[J]. Food Chemistry,2020,331:1−11.
    [27] 刘泽宇, 刘焱, 罗灿, 等. 茶多酚对草鱼鱼肉蛋白质流变学特性的影响[J]. 现代食品科技,2015,31(6):50−58. [LIU Z Y, LIU Y, LUO C, et al. Effect of tea polyphenols on protein rheological properties of grass carp[J]. Modern Food Science and Technology,2015,31(6):50−58.

    LIU Z Y, LIU Y, LUO C, et al. Effect of tea polyphenols on protein rheological properties of grass carp[J]. Modern Food Science and Technology, 2015, 31(6): 50-58.
    [28] YAN M Y, LI B F, ZHAO X, et al. Physicochemical properties of gelatin gels from walleye pollock (Theragra chalcogramma) skin cross-linked by gallic acid and rutin[J]. Food Hydrocolloids,2011,25(5):907−914. doi:  10.1016/j.foodhyd.2010.08.019
    [29] MARIJA S, JELENA R, JANA O, et al. Binding affinity between dietary polyphenols and β-lactoglobulin negatively correlates with the protein susceptibility to digestion and total antioxidant activity of complexes formed[J]. Food Chemistry,2013,136(3-4):1263−1271. doi:  10.1016/j.foodchem.2012.09.040
    [30] NAZ S , SIDDIQI R , DEW T P , et al. Epigallocatechin-3-gallate inhibits lactase but is alleviated by salivary proline-rich proteins[J]. Journal of Agricultural & Food Chemistry,2011,59(6):2734−2738.
    [31] 王菡, 李高华, 陈涛, 等. 基于广谱性单克隆抗体免疫分析有机磷农药残留[J]. 食品安全质量检测学报,2015,6(11):4399−4408. [WANG H, LI G H, CHEN T, et al. Immunoassay of organophosphorus pesticide residues based on broad-spectrum monoclonal antibody[J]. Journal of Food Safety and Quality Inspection,2015,6(11):4399−4408.

    WANG H, LI G H, CHEN T, et al. Immunoassay of organophosphorus pesticide residues based on broad-spectrum monoclonal antibody[J]. Journal of food safety and quality inspection, 2015, 6 (11): 4399-4408.
    [32] 王启明, 唐瑜婉, 李春翼, 等. NaCl浓度对麦醇溶蛋白与槲皮素相互作用的影响[J]. 食品科学,2021,42(8):29−39. [WANG Q M, TANG Y W, LI C Y, et al. Effect of NaCl concentration on the interaction between gliadin and quercetin[J]. Food Science,2021,42(8):29−39. doi:  10.7506/spkx1002-6630-20200724-329

    WANG Q M, TANG Y W, LI C Y, et al. Effect of NaCl concentration on the interaction between gliadin and quercetin [J]. Food Science, 2021, 42 (8): 29-39. doi:  10.7506/spkx1002-6630-20200724-329
    [33] ZHANG Y Z, XIANG X, PING M, et al. Spectroscopic studies on the interaction of Congo red with bovine serum albumin[J]. Spectrochim Acta A,2009,72:907−914. doi:  10.1016/j.saa.2008.12.007
    [34] 苗向硕, 吴伟, 吴晓娟. 表没食子儿茶素没食子酸酯和米糠蛋白的相互作用[J]. 中国粮油学报,2019,34(12):19−26. [MIAO X S, WU W, WU X J. Interaction between epigallocatechin gallate and rice bran protein[J]. Chinese Journal of Grain and Oil,2019,34(12):19−26. doi:  10.3969/j.issn.1003-0174.2019.12.005

    MIAO X S, WU W, WU X J. Interaction between epigallocatechin gallate and rice bran protein[J]. Chinese Journal of Grain and Oil, 2019, 34 (12): 19-26. doi:  10.3969/j.issn.1003-0174.2019.12.005
    [35] 张超, 傅玉颖, 沈亚丽, 等. 不同带电特性的壳聚糖/酪蛋白相互作用研究[J]. 中国食品学报,2021,21(2):63−71. [ZHANG C, FU Y Y, SHEN Y L, et al. Study on chitosan/casein interaction with different charging characteristics[J]. Chinese Journal of Food,2021,21(2):63−71.

    ZHANG C, FU Y Y, SHEN Y L, et al. Study on chitosan/casein interaction with different charging characteristics [J]. Chinese Journal of Food, 2021, 21(2): 63-71.
    [36] CHEN W J, WANG W J, MA X B, et al. Effect of pH-shifting treatment on structural and functional properties of whey protein isolate and its interaction with (-)-epigallocatechin-3-gallate[J]. Food Chemistry,2019,274:234−241. doi:  10.1016/j.foodchem.2018.08.106
    [37] 李楠, 王国振, 曾永明, 等. 薰衣草花色苷与牛血清蛋白非共价相互作用研究[J]. 化学研究与应用,2021,33(6):1004−1011. [LI N, WANG G Z, ZENG Y M, et al. Study on non covalent interaction between Lavender anthocyanins and bovine serum protein[J]. Chemical Research and Application,2021,33(6):1004−1011. doi:  10.3969/j.issn.1004-1656.2021.06.003

    LI N, WANG G Z, ZENG Y M, et al. Study on non covalent interaction between Lavender anthocyanins and bovine serum protein[J]. Chemical Research and Application, 2021, 33 (6): 1004-1011. doi:  10.3969/j.issn.1004-1656.2021.06.003
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-13
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础