Isolation and Identification of Antibacterial Lpopeptides from Bacillus subtilis KC-WQ Fermentation Broth and Optimization of Fermentation Conditions
-
摘要: 本文研究了一株枯草芽孢杆菌KC-WQ的胞外分泌物的抑菌效果及功效成分。实验发现枯草芽孢杆菌KC-WQ对大肠杆菌(Escherichia coli)、沙门氏菌(Salmonella enterica subsp. enterica)和嗜水气单胞菌(Aeromonas hydrophila)均有明显的抑菌效果,其中对沙门氏菌的抑制效果最为显著。在此基础上,采用酸沉淀法分离抗菌成分,通过薄层色谱法(TLC)、高效液相色谱法(HPLC)、基质辅助激光解吸电离飞行时间质谱(MALDI-TOF-MS)分析结构发现,该菌株分泌抗菌物质为脂肽类,分子量分布在1030.5~1491.4 Da之间,主要由伊枯草菌素(Iturin)、表面活性素(Surfactin)和芬荠素(Fengycin)组成,最小抑菌浓度为0.8 mg/mL。该脂肽成分经热处理(105 ℃,20 min)后,仍保持良好的抗菌效果。采用响应面法对KC-WQ的发酵条件进行优化,得到最佳发酵条件为:初始pH为6.0,发酵温度为36 ℃,摇床转速为208 r/min,预测粗产物产量为1.311 g/L,后经实验验证,实际产量可达1.236 g/L。上述结果表明,枯草芽孢杆菌KC-WQ具有良好的抗菌性能和加工性能,可作为抑菌成分,在食品保藏和抗菌包装材料开发中具有应用前景。Abstract: This paper studied the antibacterial effect and functional components of the extracellular secretions of a strain of Bacillus subtilis KC-WQ. The experiment found that KC-WQ had obvious antibacterial effect on Escherichia coli, Salmonella enterica subsp. enterica and Aeromonas hydrophila, among which it had the most significant antibacterial effect on Salmonella. On this basis, the acid precipitation method was used to separate the antibacterial components, and the structure was found through thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The antibacterial substances secreted by this strain were lipopeptides with a molecular weight distribution between 1030.5 and 1491.4 Da, mainly composed of Iturin, Surfactin and Fengycin, and the minimum inhibitory concentration was 0.8 mg/mL. The lipopeptide component still maintained a good antibacterial effect after heat treatment (105 ℃, 20 min). The response surface method was used to optimize the culture conditions of KC-WQ, and the best fermentation conditions were obtained: The initial pH was 6.0, the fermentation temperature was 36 ℃, the shaker speed was 208 r/min, and the predicted crude product yield was 1.311 g/L. Later verified by experiments, the actual yield was 1.236 g/L. The above results indicated that Bacillus subtilis KC-WQ had good antibacterial and processing properties, could be used as a good antibacterial ingredient, and had a good application prospect in the development of antibacterial and preservation materials in food industry.
-
表 1 各变量及其高低水平设计
Table 1. Variables and their high and low level design
编号 因素 −1 0 +1 X1 初始pH 6 7 8 X2 发酵温度(℃) 33 35 37 X3 摇床转速(r/min) 150 200 250 表 2 枯草芽孢杆菌KC-WQ抑菌圈直径
Table 2. Inhibition zone diameter of Bacillus subtilis KC-WQ
抑菌圈直径(mm) Ⅰ Ⅱ Ⅲ Ⅳ 沙门氏菌 0.00 11.00±1.00a 14.83±2.47b 16.50±2.18c 大肠杆菌 0.00 11.33±1.53a 12.00±2.65b 12.83±2.37c 嗜水气单胞菌 0.00 10.00±2.00a 14.40±1.04b 15.77±1.57c 注:具有显著性差异的组用不同的字母标记。 表 3 脂肽粗提物样品HPLC保留时间及面积
Table 3. HPLC retention time and area of crude lipopeptide extract sample
保留时间(峰尖,min) 面积 峰面积占比(%) 1 9.977 836.250 4.275 2 10.402 299.384 1.530 3 14.149 2971.641 15.191 4 15.301 1701.197 8.697 5 15.859 841.169 4.300 6 17.189 241.511 1.235 7 19.508 1170.928 5.986 8 20.897 873.000 4.463 表 4 MS结果分析
Table 4. MS result analysis
Family m/z (M+H+) (M+Na+) (M+K+) Iturin C13~C16 1030.477 1052.447 1068.357 1044.482 1066.356 1082.319 1058.486 1080.364 1096.326 1072.494 1094.365 1110.332 C13~C15 Bacillomycin D 1031.478 1053.312 1069.408 1045.483 1067.353 1083.316 1059.486 1081.322 1097.322 Surfactin C12~C15 Surfactin − 1016.472 1032.437 − 1030.477 1046.441 − 1044.482 1060.443 − 1058.486 1074.449 Fengycin C15~C18 Fengycin A − 1471.366 1487.338 − 1485.386 1501.355 − 1499.394 1515.385 − 1513.406 1529.373 表 5 不同浓度的KC-WQ抗菌脂肽对沙门氏菌的抑菌效果
Table 5. Inhibition of different concentrations of KC-WQ crude lipopeptide against Salmonella
抗菌脂肽质量浓度(mg·mL−1) 抑菌圈直径(mm) 0.4 − 0.8 10.0±0.1 1.6 11.0±0.1 3.1 11.5±0.3 6.2 12.6±0.3 12.2 14.7±0.3 25 16.7±0.2 表 6 响应值试验及结果
Table 6. Response value test and results
实验号 因素 脂肽粗产量(g/L) X1 X2 X3 1 7 35 200 1.256±0.06 2 7 37 250 1.224±0.06 3 6 35 250 1.021±0.05 4 6 37 200 0.976±0.04 5 7 35 200 1.324±0.06 6 8 37 200 0.889±0.04 7 7 37 150 1.132±0.05 8 8 35 150 1.024±0.05 9 7 35 200 1.256±0.06 10 8 33 200 0.932±0.04 11 7 35 200 1.256±0.06 12 7 35 200 1.256±0.06 13 7 33 150 1.004±0.05 14 6 35 150 0.952±0.04 15 7 33 250 1.136±0.05 16 8 35 250 1.044±0.05 17 6 33 200 0.951±0.04 表 7 二次多项回归模型方差结果
Table 7. Quadratic polynomial regression model variance results
方差来源 平方和 自由度 均方 F值 P 显著性 模型 0.31 9 0.034 15.15 0.0008 *** X1 0.071 1 0.071 31.68 0.0008 *** X2 0.053 1 0.053 23.84 0.0018 ** X3 3.433E-003 1 3.433E-003 1.53 0.2560 不显著 X1X2 2.712E-003 1 2.712E-003 1.21 0.3080 不显著 X1X3 1.211E-003 1 1.211E-003 0.54 0.4865 不显著 X2X3 4.000E-004 1 4.000E-004 0.18 0.6855 不显著 X12 0.20 1 0.20 87.94 <0.0001 *** X22 0.050 1 0.050 22.47 0.0021 ** X32 5.510E-003 1 5.510E-003 2.46 0.1611 不显著 残差 0.016 7 2.244E-003 失拟项 0.012 3 4.002E-003 4.33 0.0954 不显著 纯误差 3.699E-003 4 9.248E-003 总和 0.32 16 注:R2=0.9512,R2Adj=0.8884,*P<0.05,**P<0.01,*** P<0.001。 -
[1] 孙颖颖, 董鹏程, 朱立贤, 等. 食源性致病菌快速检测研究进展[J]. 食品与发酵工业,2020,46(17):264−270. [SUN Y Y, DONG P C, ZHU L X, et al. Research progress in rapid detection of foodborne pathogens[J]. Food and Fermentation Industries,2020,46(17):264−270.SUN Y Y, DONG P C, ZHU L X, et al. Research progress in rapid detection of foodborne pathogens[J]. Food and Fermentation Industries, 2020, 46(17): 264-270. [2] 金伟伟, 贾振华, 宋水山. 芽胞杆菌产生的脂肽类抗生素的结构和应用[J]. 微生物学杂志,2017,37(3):122−127. [JIN W W, JIA Z H, SONG S S. Structure and the application of lipopeptides antibiotics from Bacillus[J]. Journal of Microbiology,2017,37(3):122−127. doi: 10.3969/j.issn.1005-7021.2017.03.020JIN W W, JIA Z H, SONG S S. Structure and the application of lipopeptides antibiotics from Bacillus[J]. Journal of Microbiology, 2017 , 37(3): 122-127. doi: 10.3969/j.issn.1005-7021.2017.03.020 [3] RATHINAKUMAR R, WALKENHORST W F, WIMLEY W C, et al. Broad-spectrum antimicrobial eptides by rational combinatorial design and high-throughput screening the importance of interfacial activity[J]. Journal of the American Chemical Society,2009,131(22):7609−7617. doi: 10.1021/ja8093247 [4] 高晓平, 胡惠, 黄现青. Surfactin抑制乳中大肠杆菌O157活性研究[J]. 食品科学,2009,30(11):91−94. [GAO X P, HU H, HUANG X Q. Sterilization effect of Surfactin on Escherichia coli O157 in fresh milk[J]. Food Science,2009,30(11):91−94.GAO X P, HU H, HUANG X Q. Sterilization effect of Surfactin on Escherichia coli O157 in fresh milk[J]. Food Science, 2009, 30(11):91-94. [5] MANDAL S M, BARBOSA A, FRANCO O L. Lipopeptides in microbial infection control: Scope and reality for industry[J]. Biotechnology Advances,2013,31(2):338−345. doi: 10.1016/j.biotechadv.2013.01.004 [6] HUANG E, YOUSEF A E. The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage[J]. Appl Environ Microbiol,2014,80(9):2700−2704. doi: 10.1128/AEM.03775-13 [7] SUGAWARA K, NUMATA K I, KONISHI M, et al. Empedopeptin (BMY-28117), a new depsipeptide antibiotic. II. Structure determination[J]. Journal of Antibiotics,1984,37(9):958−964. doi: 10.7164/antibiotics.37.958 [8] WASHIO K, LIM S P, ROONGSAWANG N, et al. Identification and characterization of the genes responsible for the production of the cyclic lipopeptide arthrofactin by Pseudomonas sp. MIS38[J]. Journal of the Agricultural Chemical Society of Japan,2010,74(5):992−999. [9] SM GUÉRET, MEIER P, ROTH H J. Cyclic carbo-isosteric depsipeptides and peptides as a novel class of peptidomimetics[J]. Organic Letters,2014,16(5):1502−1505. doi: 10.1021/ol5003797 [10] KIHO T, NAKAYAMA M, YASUDA K, et al. Structure-activity relationships of globomycin analogues as antibiotics[J]. Bioorganic & Medicinal Chemistry,2004,12(2):337−361. [11] VILELA W F D, FONSECA S G, FANTINATTI-GARBOGGINI F, et al. Production and properties of a surface-active lipopeptide produced by a new marine Brevibacterium luteolum strain[J]. Applied Biochemistry & Biotechnology,2014,174(6):2245−2256. [12] SHARAFI H, ABDOLI M, HAJFARAJOLLAH H, et al. First report of a lipopeptide biosurfactant from thermophilic bacterium Aneurinibacillus thermoaerophilus MK01 newly isolated from municipal landfill site[J]. Applied Biochemistry & Biotechnology,2014,173(5):1236−1249. [13] 连玲丽, 谢荔岩, 郑璐平, 等. 拮抗菌SB1的鉴定及其抗菌物质的分析[J]. 微生物学通报,2010,37(7):986−991. [LIAN L L, XIE L Y, ZHENG L P, et al. Identification of antagonistic Bacterium SB1 and analysis on its antibacterial substance[J]. Microbiology,2010,37(7):986−991.LIAN L L, XIE L Y, ZHENG L P, et al. Identification of antagonistic Bacterium SB1 and analysis on its antibacterial substance[J]. Microbiology, 2010, 37(7): 986-991. [14] CHEN Y, X GAO, WEI Y, et al. Isolation, purification and anti-hypertensive effect of a novel angiotensin i-converting enzyme (ACE) inhibitory peptide from ruditapes philippinarum fermented with Bacillus natto[J]. Food & Function,2018,9(10):1039. [15] 丁飞鸿, 耿云龙, 樊士德, 等. 抑制食源性致病菌脂肽的分离鉴定及生物学特性分析[J]. 食品与发酵工业,2022,48(6):195−203. [DING F H, GENG Y L, FAN S D, et al. Isolation, identifica- tion and biological characteristics analysis of lipopeptides that inhibit food-borne pathogens[J]. Food and Fermentation Industries,2022,48(6):195−203. doi: 10.13995/j.cnki.11-1802/ts.028471DING F H, GENG Y L, FAN S D, et al. Isolation, identifica- tion and biological characteristics analysis of lipopeptides that inhib- it food-borne pathogens[J]. Food and Fermentation Industries, 2022, 48(6): 195-203. DOI: 10.13995/j.cnki.11-1802/ts.028471. [16] VOLLENBROICH D, PAULI G, OZEL M, et al. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis[J]. Appl Environ Microbiol,1997,63(1):44−49. doi: 10.1128/aem.63.1.44-49.1997 [17] 高学文, 姚仕义, HUONG Pham, 等. 基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J]. 中国农业科学,2003,36(12):1496−1501. [GAO X W, YAO S Y, HUONG Pham, et al. Lipopeptide antibiotics produced by the engineered strain Bacillus subtilis GEB3 and detection of its bioactivity[J]. Scientla Agricultura Scinica,2003,36(12):1496−1501. doi: 10.3321/j.issn:0578-1752.2003.12.012GAO X W, YAO S Y, Huong Pham, et al. Lipopeptide antibiotics produced by the engineered strain Bacillus subtilis GEB3 and detection of its bioactivity[J]. Scientla Agricultura Scinica, 2003, 36(12): 1496-1501. doi: 10.3321/j.issn:0578-1752.2003.12.012 [18] TSUKAGOSHI N, TAMURA G, ARIMA K. A novel protoplast-bursting factor (surfactin) obtained from Bacillus subtilis IAM 1213. I. The effects of surfactin on Bacillus megaterium KM[J]. Biochimica et Biophysica Acta,1970,196(2):211−214. doi: 10.1016/0005-2736(70)90008-8 [19] 王帅, 高圣风, 高学文, 等. 枯草芽孢杆菌脂肽类抗生素发酵和提取条件[J]. 中国生物防治,2007,23(4):342−347. [WANG S, GAO S F, GAO X W, et al. Fermentation and extraction conditions of Bacillus subtilis lipopeptide antibiotics[J]. Chinese Journal of Biological Control,2007,23(4):342−347.WANG S, GAO S F, GAO X W, et al. Fermentation and extraction conditions of Bacillus subtilis lipopeptide antibiotics[J]. Chinese Journal of Biological Control, 2007, 23(4): 342-347. [20] 喻钢, 田万红, 董思国, 等. 枯草芽孢杆菌抗菌脂肽的分离纯化及质谱检测[J]. 药物分析杂志,2014(10):56−61. [YU G, TIAN W H, DONG S G, et al. Study on purification and mass spectrometric detection of antimicrobial peptide from Bacillus subtilis[J]. Chinese Journal of Pharmaceutical Analysis,2014(10):56−61.YU G, TIAN W H, DONG S G, et al. Study on purification and mass spectrometric detection of antimicrobial peptide from Bacillus subtilis[J]. Chinese Journal of Pharmaceutical Analysis, 2014(10): 56-61 [21] 白杰, 贠建民, 祝发明, 等. 枯草芽孢杆菌菌株B3抗菌脂肽的分离纯化与鉴定[J]. 食品与发酵工业,2018,44(8):82−89. [BAI J, YUN J M, ZHU F M, et al. Isolation, purification and identification of antibacterial peptide from Bacillus subtilis strain B3[J]. Food and Fermentation Industries,2018,44(8):82−89.BAI J, YUN J M, ZHU F M, et al. Isolation, purification and identification of antibacterial peptide from Bacillus subtilis strain B3[J]. Food and Fermentation Industries, 2018, 44(8): 82-89. [22] 曾国洪, 丛丽娜, 毕楠. 枯草芽孢杆菌诱变株产抗菌脂肽的特性[J]. 大连工业大学学报,2019,38(4):235−238. [ZENG G H, CONG L N, BI N. Characteristics of antimicrobial lipopeptides produced by Bacillus subtilis mutant strains[J]. Journal of Dalian Polytechnic University,2019,38(4):235−238.ZENG G H, CONG L N, BI N. Characteristics of antimicrobial lipopeptides produced by Bacillus subtilis mutant strains[J]. Journal of Dalian Polytechnic University, 2019, 38(4): 235-238. [23] FU T, ISLAM M S, ALI M, et al. Two antimicrobial genes from Aegilops tauschii cosson identified by the Bacillus subtilis expression system[J]. Scientific Reports,2020,10(1):13346. doi: 10.1038/s41598-020-70314-5 [24] 黄君. 海洋枯草芽孢杆菌HS-A38产抗菌脂肽类物质发酵条件的优化[D]. 大连: 大连工业大学, 2018.HUANG J. Optimization of the fermentation conditions of Bacillus subtilis HS-A38[D]. Dalian: Dalian Polytechnic University, 2018. [25] 金清, 肖明. 新型抗菌脂肽——表面活性素、伊枯草菌素和丰原素[J]. 微生物与感染,2018,13(1):56−64. [JIN Q, XIAO M. Novel antimicrobial peptides: Surfactin, iturin and fengycin[J]. Journal of Microbes and Infections,2018,13(1):56−64. doi: 10.3969/j.issn.1673-6184.2018.01.010JIN Q, XIAO M. Novel antimicrobial peptides: surfactin, iturin and fengycin[J]. Journal of Microbes and Infections, 2018, 13(1): 56-64. doi: 10.3969/j.issn.1673-6184.2018.01.010 [26] CHUA B Y, ZENG W, LAU Y F, et al. Comparison of lipopeptide-based immunocontraceptive vaccines containing different lipid groups[J]. Vaccine,2007,25(1):92−101. doi: 10.1016/j.vaccine.2006.07.012 [27] 陈亮, 秦素雅, 衡军影, 等. 微生物抗菌脂肽在食品工业中的应用研究进展[J]. 河南工业大学学报:自然科学版,2018,39(5):119−126. [CHEN L, QIN S Y, HENG J Y, et al. Research and application advances of antimicrobial peptides in food industry[J]. Journal of Henan University of Technology (Natural Science Edition),2018,39(5):119−126.CHEN L, QIN S Y, HENG J Y, et al. Research and application advances of antimicrobial peptides in food industry[J]. Journal of Henan University of Technology (Natural Science Edition), 2018, 39(5): 119-126. [28] NITSCHKE M, PASTORE G M. Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava waste[J]. Bioresource Technology,2006,97(2):336−341. doi: 10.1016/j.biortech.2005.02.044 [29] 何岚, 王柳懿, 朱琪, 等. 两种绘制枯草芽孢杆菌和大肠杆菌生长曲线方法的比较[J]. 天津农业科学,2017,23(5):14−18. [HE L, WANG L Y, ZHU Q, et al. Comparison of two methods for drawing the growth curve of Bacillus subtilis and Escherichia coli[J]. Tianjin Agricultural Sciences,2017,23(5):14−18. doi: 10.3969/j.issn.1006-6500.2017.05.004HE L, WANG L Y, ZHU Q, QIAO J Y, WANG W J. Comparison of two methods for drawing the growth curve of Bacillus subtilis and Escherichia coli[J]. Tianjin Agricultural Sciences, 2017, 23(5): 14-18. doi: 10.3969/j.issn.1006-6500.2017.05.004 -