• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

屎肠球菌与酿酒酵母共发酵产γ-氨基丁酸条件优化及机制研究

孙向阳 汪杰 姚红梅 郑淼心 李婵媛 张恕铭 张庆

孙向阳,汪杰,姚红梅,等. 屎肠球菌与酿酒酵母共发酵产γ-氨基丁酸条件优化及机制研究[J]. 食品工业科技,2022,43(15):132−138. doi:  10.13386/j.issn1002-0306.2021100274
引用本文: 孙向阳,汪杰,姚红梅,等. 屎肠球菌与酿酒酵母共发酵产γ-氨基丁酸条件优化及机制研究[J]. 食品工业科技,2022,43(15):132−138. doi:  10.13386/j.issn1002-0306.2021100274
SUN Xiangyang, WANG Jie, YAO Hongmei, et al. Optimization of Conditions for γ-Aminobutyric Acid Yield by Co-fermentation of Enterococcus faecium with Saccharomyces cerevisiae and Mechanism Research[J]. Science and Technology of Food Industry, 2022, 43(15): 132−138. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021100274
Citation: SUN Xiangyang, WANG Jie, YAO Hongmei, et al. Optimization of Conditions for γ-Aminobutyric Acid Yield by Co-fermentation of Enterococcus faecium with Saccharomyces cerevisiae and Mechanism Research[J]. Science and Technology of Food Industry, 2022, 43(15): 132−138. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021100274

屎肠球菌与酿酒酵母共发酵产γ-氨基丁酸条件优化及机制研究

doi: 10.13386/j.issn1002-0306.2021100274
基金项目: 四川省科技计划项目(2019ZYZF0170);四川省自然科学基金项目(2022NSFSC0105);西华大学研究生创新基金项目(YCJJ2020083);省级大学生创新创业训练计划项目(S202110650036)。
详细信息
    作者简介:

    孙向阳(1995−),男,硕士研究生,研究方向:食品科学,E-mail:1764417210@qq.com

    通讯作者:

    张庆(1979−),男,博士,教授,研究方向:食品微生物技术,E-mail:biozhangq@163.com

  • 中图分类号: TS201.3

Optimization of Conditions for γ-Aminobutyric Acid Yield by Co-fermentation of Enterococcus faecium with Saccharomyces cerevisiae and Mechanism Research

  • 摘要: 为提高γ-氨基丁酸(γ-aminobutyric acid,GABA)产量,以产GABA屎肠球菌(Enterococcus faecium)AB157与酿酒酵母(Saccharomyces cerevisiae)SC-125为研究对象,通过单因素实验和响应面法优化共发酵条件;同时分析最优条件下共发酵和单菌发酵体系谷氨酸脱羧酶(glutamate decarboxylase,GAD)的酶活力及通过添加无细胞上清液(cell-free supernatant,CFS)探究高产GABA机制。结果表明:当总接种量2%(V/V),发酵温度为35 ℃、屎肠球菌AB157和酿酒酵母SC-125的接种比例为5:1(V/V)、L-谷氨酸钠浓度为12 g/L、发酵96 h时,共发酵体系GABA产量最高,达6.55 g/L,较单菌发酵体系产量提高到1.78倍;GAD酶活力分析表明,共发酵可显著提高GAD酶活;添加屎肠球菌AB157或酿酒酵母SC-125的CFS可显著提升GABA产量。本研究为屎肠球菌和酿酒酵母共发酵提高GABA产量及高产GABA机制的探讨提供了一定的理论参考。
  • 图  1  发酵温度对GABA产量及活菌数的影响

    Figure  1.  Effect of fermentation temperature on GABA yield and viable cell counts

    注:相同发酵体系小写字母不同表示差异显著(P<0.05),大写字母不同表示差异极显著(P<0.01);图2~图4同。

    图  2  接种比例对GABA产量和活菌数的影响

    Figure  2.  Effect of inoculum proportions on GABA yield and viable cell counts

    图  3  底物浓度对GABA产量及活菌数的影响

    Figure  3.  Effect of substrate concentration on GABA yield and viable cell counts

    图  4  发酵时间对GABA产量及活菌数的影响

    Figure  4.  Effect of fermentation time on GABA yield and viable cell counts

    图  5  谷氨酸脱羧酶(GAD)酶活力与GABA产量测定结果

    Figure  5.  The result of glutamate decarboxylase (GAD) activity and GABA yield

    注:相同发酵时间不同发酵体系小写字母不同表示差异显著(P<0.05)。

    图  6  添加CFS对GABA产量的影响

    Figure  6.  Effect of adding CFS on GABA yield

    注:小写字母和大写字母不同表示差异显著(P<0.05)。

    表  1  因素水平表

    Table  1.   The factors and levels

    水平因素
    A 发酵温度(℃)B 接种比例(V/V)C L-谷氨酸钠(g/L)
    −1333:110
    0354:112
    1375:114
    下载: 导出CSV

    表  2  响应面试验设计与结果

    Table  2.   Response surface experimental design and results

    A 发酵温度(℃)B 接种比例(V/V)C L-谷氨酸钠(g/L)GABA产量(g/L)
    1333:1125.55
    2355:1146.52
    3354:1126.55
    4335:1125.98
    5354:1126.55
    6374:1105.33
    7354:1126.54
    8354:1126.51
    9374:1146.21
    10373:1125.86
    11375:1126.26
    12355:1105.85
    13334:1105.26
    14334:1145.69
    15353:1105.45
    16354:1126.50
    17353:1146.1
    下载: 导出CSV

    表  3  回归模型方差分析

    Table  3.   Analysis of variance of regression model

    方差来源平方和自由度均方FP显著性
    模型3.5090.39178.69< 0.0001**
    A0.1710.1777.56< 0.0001**
    B0.3410.34157.86< 0.0001**
    C0.8710.87398.46< 0.0001**
    AB2.403E-00412.403E-0040.110.7495
    AC0.05110.05123.190.0019**
    BC6.006E-00516.006E-0050.0280.8728
    A21.0411.04476.00< 0.0001**
    B20.08210.08237.740.0005**
    C20.7810.78358.01< 0.0001**
    残差0.01572.178E-003
    失拟项0.01233.864E-0034.230.0987
    净误差3.655E-00349.137E-004
    总离差3.5216
    决定系数R2=0.9957R2Adj=0.9901
    注:**表示差异极显著P<0.01。
    下载: 导出CSV
  • [1] LIN J H, XU Z J, PENG J S, et al. OsProT1 and OsProT3 function to mediate proline- and γ-aminobutyric acid-specific transport in yeast and are differentially expressed in rice (Oryza sativa L.)[J]. Rice,2019,12(1):1−10. doi:  10.1186/s12284-018-0262-x
    [2] SANCHART C, RATTANAPORN O, HALTRICH D, et al. Technological and safety properties of newly isolated GABA-producing Lactobacillus futsaii strains[J]. Journal of Applied Microbiology,2016,121(3):734−745. doi:  10.1111/jam.13168
    [3] 周春英, 陶荣芬, 顾永健, 等. γ-氨基丁酸对亚综合征性抑郁认知功能的作用[J]. 临床精神医学杂志,2011,21(1):12−14. [ZHOU C Y, TAO R F, GU Y J, et al. Effect of sertraline with γ-aminobutyric acid on cognitive function of the subsyndromal symptomatic depression[J]. Journal of Clinical Psychiatry,2011,21(1):12−14.

    ZHOU C Y, TAO R F, GU Y J, et al. Effect of sertraline with γ-aminobutyric acid on cognitive function of the subsyndromal symptomatic depression[J]. Journal of Clinical Psychiatry, 2011, 21(1): 12-14.
    [4] HUANG C Y, KUO W W, WANG H F, et al. GABA tea ameliorates cerebral cortex apoptosis and autophagy in streptozotocin-induced diabetic rats[J]. Journal of Functional Foods,2014,6:534−544. doi:  10.1016/j.jff.2013.11.020
    [5] 国立东, 张文文, 刘艳, 等. 传统发酵东北酸菜中植物乳杆菌HUCM115的分离及益生特性[J]. 食品科学,2020,41(18):140−145. [GUO L D, ZHANG W W, LIU Y, et al. Isolation and probiotic properties of Lactobacillus plantarum HUCM115 from traditional pickled Chinese cabbage[J]. Food Science,2020,41(18):140−145. doi:  10.7506/spkx1002-6630-20190807-084

    GUO L D, ZHANG W W, LIU Y, et al. Isolation and probiotic properties of Lactobacillus plantarum HUCM115 from traditional pickled Chinese cabbage[J]. Food Science, 2020, 41(18): 140-145. doi:  10.7506/spkx1002-6630-20190807-084
    [6] 刘璐, 吴江丽, 杨金桃, 等. 发酵鱼酱酸产GABA乳酸菌的分离筛选及发酵特性研究[J]. 食品科学,2021,42(18):73−79. [LIU L, WU J L, YANG J T, et al. Isolation and fermentation characteristics of γ-aminobutyric acid-producing lactic acid bacteria from Yujiang, a traditional Miao ethnic fermented condiment[J]. Food Science,2021,42(18):73−79. doi:  10.7506/spkx1002-6630-20200914-182

    LIU L, WU J L, YANG J T, et al. Isolation and fermentation characteristics of γ-aminobutyric acid-producing lactic acid bacteria from Yujiangsuan, a traditional Miao ethnic fermented condiment[J]. Food Science, 2021, 42(18): 73-79. doi:  10.7506/spkx1002-6630-20200914-182
    [7] 司阔林, 徐捐捐, 岳田利, 等. 布氏乳杆菌产γ-氨基丁酸发酵条件的优化[J]. 食品科学,2020,41(2):87−93. [SI K L, XU J J, YUE T L, et al. Optimization of fermentation conditions for γ-aminobutyric acid production by Lactobacillus buchneri[J]. Food Science,2020,41(2):87−93. doi:  10.7506/spkx1002-6630-20181218-210

    SI K L, XU J J, YUE T L, et al. Optimization of fermentation conditions for γ-aminobutyric acid production by Lactobacillus buchneri[J]. Food Science, 2020, 41(2): 87-93. doi:  10.7506/spkx1002-6630-20181218-210
    [8] 谭霄, 孙擎, 曾林, 等. 1株产γ-氨基丁酸植物乳杆菌谷氨酸脱羧酶基因的克隆与表达[J]. 食品科学,2018,39(18):159−165. [TAN X, SUN Q, ZENG L, et al. Cloning and expressing of glutamate decarboxylase gene from Lactobacillus plantarum producing γ-aminobutyric acid[J]. Food Science,2018,39(18):159−165. doi:  10.7506/spkx1002-6630-201818025

    TAN X, SUN Q, ZENG L, et al. Cloning and expressing of glutamate decarboxylase gene from Lactobacillus plantarum producing γ-aminobutyric acid[J]. Food Science, 2018, 39(18): 159-165. doi:  10.7506/spkx1002-6630-201818025
    [9] 陈烟兰, 杨民和. 产谷氨酸脱羧酶真菌的检测和筛选[J]. 微生物学杂志,2013,33(4):22−29. [CHEN Y L, YANG M H. Detection and screening of fungal strains producing glutamic acid decarboxylase[J]. Journal of Microbiology,2013,33(4):22−29.

    CHEN Y L, YANG M H. Detection and screening of fungal strains producing glutamic acid decarboxylase[J]. Journal of Microbiology, 2013, 33(4): 22-29.
    [10] 赵炜彤. 高产γ-氨基丁酸酵母菌菌株的筛选、诱变及发酵条件优化[D]. 长春: 吉林农业大学, 2015

    ZHAO W T. The study on screening and mutation breeding of high-yield γ-aminobutyric acid yeast strains and optimization of its fermentation conditions[D]. Changchun: Jilin Agricultural University, 2015.
    [11] 曾林, 刘波, 许小艳, 等. 四川泡菜中产γ-氨基丁酸微生物的系统发育与表达能力评估[J]. 食品科学,2017,38(2):87−91. [ZENG L, LIU B, XU X Y, et al. Phylogeny and performance assessment of γ-aminobutyric acid-producing microorganisms from Sichuan pickles[J]. Food Science,2017,38(2):87−91. doi:  10.7506/spkx1002-6630-201702014

    ZENG L, LIU B, XU X Y, et al. Phylogeny and performance assessment of γ-aminobutyric acid-producing microorganisms from Sichuan pickles[J]. Food Science, 2017, 38(2): 87-91. doi:  10.7506/spkx1002-6630-201702014
    [12] 李文, 董明盛. 发酵鹰嘴豆乳产γ-氨基丁酸乳酸菌的复合诱变选育[J]. 食品科学,2018,39(16):147−153. [LI W, DONG M S. Improving γ-aminobutyric acid production of lactic acid bacteria in chickpea milk by compound mutagenesis[J]. Food Science,2018,39(16):147−153. doi:  10.7506/spkx1002-6630-201816022

    LI W, DONG M S. Improving γ-aminobutyric acid production of lactic acid bacteria in chickpea milk by compound mutagenesis[J]. Food Science, 2018, 39(16): 147-153. doi:  10.7506/spkx1002-6630-201816022
    [13] 刘豪栋, 杨昳津, 林高节, 等. 酵母与乳酸菌的相互作用模式及其在发酵食品中的应用研究进展[J]. 食品科学,2022,43(9):268−274. [LIU H D, YANG Y J, LIN G J, et al. Research progress on interaction patterns between yeast and lactic acid bacteria and their application in fermented foods[J]. Food Science,2022,43(9):268−274.

    LIU H D, YANG Y J, LIN G J, et al. Research progress on interaction patterns between yeast and lactic acid bac- teria and their application in fermented foods[J]. Food Science,2022,43(9):268-274.
    [14] 赵小燕. 酿酒酵母与植物乳杆菌IMAU10120共生菌株筛选及其益生特性研究[D]. 呼和浩特: 内蒙古农业大学, 2014

    ZHAO X Y. Screening strains of S. cerevisiae with the co-symbiosis of L. plantarum IMAU10120 for probiotic properties[D]. Hohhot: Inner Mongolia Agricultural University, 2014.
    [15] ROOSTITA R, FLEET G H. The occurrence and growth of yeasts in Camembert and Blue-veined cheeses[J]. International Journal of Food Microbiology,1996,28(3):393−404. doi:  10.1016/0168-1605(95)00018-6
    [16] 莫依灿, 钟伟俊, 何湛, 等. 黄酒中乳酸菌的研究进展[J]. 中国酿造,2015,34(9):5−8. [MO Y C, ZHONG W J, HE Z, et al. Research progress of lactic acid bacteria in Chinese rice wine[J]. China Brewing,2015,34(9):5−8. doi:  10.11882/j.issn.0254-5071.2015.09.002

    MO Y C, ZHONG W J, HE Z, et al. Research progress of lactic acid bacteria in Chinese rice wine[J]. China Brewing, 2015, 34(9): 5-8. doi:  10.11882/j.issn.0254-5071.2015.09.002
    [17] 白天天, 郭雪峰. 屎肠球菌的特性及其在畜牧生产中的应用研究进展[J]. 中国畜牧杂志,2021,57(2):16−20. [BAI T T, GUO X F. Characteristics of Enterococcus faecium and its application in livestock production[J]. Chinese Journal of Animal Science,2021,57(2):16−20.

    BAI T T, GUO X F. Characteristics of Enterococcus faecium and its application in livestock production[J]. Chinese Journal of Animal Science, 2021, 57(2): 16-20.
    [18] 丁耿芝. 酵母菌添加对饲喂不同精粗比饲粮肉牛瘤胃发酵、养分降解和血浆代谢组的影响[D]. 北京: 中国农业大学, 2014

    DING G Z. Effect of Saccharomyces cerevisiae on ruminal fermentation characteristics, nutrient degradation and plasma metabonomics of steers fed diets with different concentrate to forage ratios[D]. Beijing: China Agricultural University, 2014.
    [19] 孙擎, 曾林, 谭霄, 等. 一株产γ-氨基丁酸屎肠球菌的筛选和发酵条件优化及其益生特性分析[J]. 食品工业科技,2020,41(14):87−93,100. [SUN Q, ZENG L, TAN X, et al. Screening and optimization of fermentation conditions for γ-aminobutyric acid- producing Enterococcus faecium and analysis of probiotic properties[J]. Science and Technology of Food Industry,2020,41(14):87−93,100.

    SUN Q, ZENG L, TAN X, et al. Screening and optimization of fermentation conditions for γ-aminobutyric acid- producing Enterococcus faecium and analysis of probiotic properties[J]. Science and Technology of Food Industry, 2020, 41(14): 87-93, 100.
    [20] 刘君彦. 食品体系中乳杆菌的压力应答机制及其与酵母的群体相互作用[D]. 广州: 华南理工大学, 2019

    LIU J Y. Lactobacilli stress response mechanism and polymicrobial interaction with yeast in food system[D]. Guangzhou: South China University of Technology, 2019.
    [21] 苗凯. Lactobacillus plantarumγ-氨基丁酸发酵条件优化及基因组分析[D]. 哈尔滨: 哈尔滨工业大学, 2020

    MIAO K. Optimization of fermentation conditions of γ-aminobutyric acid produced by Lactobacillus plantarum and genome analysis[D]. Harbin: Harbin Institute of Technology, 2020.
    [22] 张敏. γ-氨基丁酸乳酸菌诱变选育及其发酵条件优化[D]. 芜湖: 安徽工程大学, 2020

    ZHANG M. Mutagenesis breeding of Enterococcus faecalis producing GABA and optimization of fermentation conditions[D]. Wuhu: Anhui Polytechnic University, 2020.
    [23] ZHANG Q, SUN Q, TAN X, et al. Characterization of γ-aminobutyric acid (GABA)-producing Saccharomyces cerevisiae and coculture with Lactobacillus plantarum for mulberry beverage brewing[J]. Journal of Bioscience and Bioengineering,2020,129(4):447−453. doi:  10.1016/j.jbiosc.2019.10.001
    [24] 彭春龙, 黄俊, 赵伟睿, 等. 酸胁迫下短乳杆菌谷氨酸脱羧酶系统关键基因的表达及酶活性响应[J]. 高校化学工程学报,2015,29(2):359−365. [PENG C L, HUANG J, ZHAO W R, et al. Effects of acid stress on the expression of key genes of glutamate decarboxylase system and enzyme activity in Lactobacillus brevis[J]. Journal of Chemical Engineering of Chinese Universities,2015,29(2):359−365.

    PENG C L, HUANG J, ZHAO W R, et al. Effects of acid stress on the expression of key genes of glutamate decarboxylase system and enzyme activity in Lactobacillus brevis[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(2): 359-365.
    [25] VILLEGAS J M, BROWN L, GIORI G D, et al. Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough[J]. LWT-Food Science and Technology,2016,67:22−26. doi:  10.1016/j.lwt.2015.11.027
    [26] 黄祖耀, 薛正莲, 陈涛. 粪肠球菌HX-3细胞转化合成γ-氨基丁酸条件的优化[J]. 食品与发酵科技,2012,48(3):6−9. [HUANG Z Y, XUE Z L, CHEN T, et al. Optimization of biotransformation conditions for γ-aminobutyric acid production by Enterococcus faecalis HX-3 cells[J]. Food and Fermentation Sciences & Technology,2012,48(3):6−9.

    HUANG Z Y, XUE Z L, CHEN T, et al. Optimization of biotransformation conditions for γ-aminobutyric acid production by Enterococcus faecalis HX-3 cells[J]. Food and Fermentation Sciences & Technology 2012, 48(3): 6-9.
    [27] SIEUWERTS S, BRON P A, SMID E J. Mutually stimulating interactions between lactic acid bacteria and Saccharomyces cerevisiae in sourdough fermentation[J]. LWT-Food Science and Technology,2018,90:201−206. doi:  10.1016/j.lwt.2017.12.022
    [28] BARTLE L, SUMBY K, SUNDSTROM J, et al. The microbial challenge of winemaking: Yeast-bacteria compatibility[J]. FEMS Yeast Research,2019,19(4):1−47.
    [29] JAROSZ D F, BROWN J C S, WALKER G A, et al. Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism[J]. Cell,2014,158(5):1083−1093. doi:  10.1016/j.cell.2014.07.025
    [30] KOMATSUZAKI N, SHIMA J, KAWAMOTO S, et al. Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods[J]. Food Microbiology,2005,22(6):497−504. doi:  10.1016/j.fm.2005.01.002
    [31] XIONG Q, XU Z, XU L, et al. Efficient production of γ-GABA using recombinant E. coli expressing glutamate decarboxylase (GAD) derived from eukaryote Saccharomyces cerevisiae[J]. Applied Biochemistry and Biotechnology,2017,183(4):1390−1400. doi:  10.1007/s12010-017-2506-4
    [32] 韩雪, 雷鹏, 樵飞, 等. 发酵乳制品中乳酸菌与酵母菌相互作用研究进展[J]. 食品工业科技,2014,35(7):388−391. [HAN X, LEI P, QIAO F, et al. Research progress on symbiotic between yeasts and lactic acid bacteria in fermented dairy products[J]. Science and Technology of Food Industry,2014,35(7):388−391.

    HAN X, LEI P, QIAO F, et al. Research progress on symbiotic between yeasts and lactic acid bacteria in fermented dairy products[J]. Science and Technology of Food Industry, 2014, 35(7): 388-391.
    [33] XU D, BEHR J, GEIßLER A J, et al. Label-free quantitative proteomic analysis reveals the lifestyle of Lactobacillus hordei in the presence of Sacchromyces cerevisiae[J]. International Journal of Food Microbiology,2019,294:18−26. doi:  10.1016/j.ijfoodmicro.2019.01.010
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  16
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-26
  • 网络出版日期:  2022-06-19
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础