• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

低聚半乳糖对植物乳杆菌发酵乳特性及抗蜡样芽孢杆菌活性的改善

刘乐 邹开翔 邵开生 于晖 陶雪莹 魏华 张志鸿

刘乐,邹开翔,邵开生,等. 低聚半乳糖对植物乳杆菌发酵乳特性及抗蜡样芽孢杆菌活性的改善[J]. 食品工业科技,2022,43(15):139−147. doi:  10.13386/j.issn1002-0306.2021110013
引用本文: 刘乐,邹开翔,邵开生,等. 低聚半乳糖对植物乳杆菌发酵乳特性及抗蜡样芽孢杆菌活性的改善[J]. 食品工业科技,2022,43(15):139−147. doi:  10.13386/j.issn1002-0306.2021110013
LIU Le, ZOU Kaixiang, SHAO Kaisheng, et al. The Improvement of Lactobacillus plantarum Fermented Milk in Characterization and Anti-Bacillus cereus Activity by Galactooligosacchari[J]. Science and Technology of Food Industry, 2022, 43(15): 139−147. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110013
Citation: LIU Le, ZOU Kaixiang, SHAO Kaisheng, et al. The Improvement of Lactobacillus plantarum Fermented Milk in Characterization and Anti-Bacillus cereus Activity by Galactooligosacchari[J]. Science and Technology of Food Industry, 2022, 43(15): 139−147. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110013

低聚半乳糖对植物乳杆菌发酵乳特性及抗蜡样芽孢杆菌活性的改善

doi: 10.13386/j.issn1002-0306.2021110013
基金项目: 国家自然基金青年科学基金项目(32101915);江西省自然科学基金项目(20212BAB215033)。
详细信息
    作者简介:

    刘乐(1997−),女,硕士研究生,研究方向:益生菌功能研究,E-mail:373010294@qq.com

    通讯作者:

    张志鸿(1988−),男,博士,助理研究员,研究方向:益生菌与肠道健康,E-mail: azhihongzhang@163.com

  • 中图分类号: TS201.3

The Improvement of Lactobacillus plantarum Fermented Milk in Characterization and Anti-Bacillus cereus Activity by Galactooligosacchari

  • 摘要: 为探究低聚半乳糖对植物乳杆菌发酵乳特性及抗菌活性的影响,本文采用单因素法考察影响发酵乳特性的主要因素,并以响应面法优化发酵乳最佳发酵条件;以产肠毒素蜡样芽孢杆菌HN001为指示菌,探究低聚半乳糖的添加对植物乳杆菌ZDY2013发酵乳抑菌活性的改善作用。结果表明:植物乳杆菌能有效利用低聚半乳糖进行体外代谢,并抑制蜡样芽孢杆菌生长;牛奶中添加适量低聚半乳糖能够增加植物乳杆菌发酵乳中的活菌数、降低发酵乳的pH,并提高其持水力;响应面分析发现低聚半乳糖发酵乳的最佳制备条件为:2.0%的植物乳杆菌接种量、1.0%的低聚半乳糖添加量、发酵时间为24 h及发酵温度为42 ℃;添加低聚半乳糖的发酵乳能有效控制产肠毒素蜡样芽孢杆菌浓度在106 CFU/mL以下。该研究结果为低聚半乳糖及植物乳杆菌ZDY2013在发酵乳中的应用奠定了理论基础。
  • 图  1  低聚半乳糖对植物乳杆菌ZDY2013生长代谢的影响

    Figure  1.  Effect of GOS on the metabolism of L. plantarum ZDY2013

    注:*表示P<0.05。

    图  2  植物乳杆菌利用改良培养基发酵的抑菌能力

    Figure  2.  The antibacterial ability of L. plantarum fermented with modified media

    图  3  不同菌液接种量对植物乳杆菌发酵乳特性的影响

    Figure  3.  Effect of different inoculation amount on the characterization of L. plantarum fermented milk

    注:#不同接种量间的比较,*相同接种量间的比较;#,*表示P<0.05,##**表示P<0.01,###***表示P<0.001;####****表示P<0.0001;图4~图6同。

    图  4  不同浓度低聚半乳糖对植物乳杆菌发酵乳特性的影响

    Figure  4.  Effect of different concentration of GOS on the characterization of L. plantarum fermented milk

    图  5  发酵时间对植物乳杆菌发酵乳特性的影响

    Figure  5.  Effect of fermentation time on the characterization of L. plantarum fermented milk

    图  6  发酵温度对植物乳杆菌发酵乳特性的影响

    Figure  6.  Effect of fermentation temperature on the characterization of L. plantarum fermented milk

    图  7  不同因素对发酵乳活菌数的交互影响

    Figure  7.  The interactive influence of different factors on viable bacteria counts of fermented milk

    图  8  低聚半乳糖发酵乳对蜡样芽孢杆菌的抑制作用

    Figure  8.  Inhibition of GOS fermented milk on B. cereus

    注:****表示P<0.0001。

    表  1  Box-Behnken试验因素与水平

    Table  1.   Factors and levels of Box-Behnken test

    因素水平
    -101
    X1接种量(%)123
    X2糖浓度(%)123
    X3发酵时间(h)122436
    X4发酵温度(℃)323742
    下载: 导出CSV

    表  2  Box-Behnken试验设计与结果

    Table  2.   Design and results of Box-Behnken test

    实验号X1X2X3X4活菌数(lg CFU/mL)
    11124378.65
    23124378.79
    31324378.93
    43324378.82
    52212328.51
    62236328.58
    72212427.95
    82236428.04
    91224328.70
    103224328.74
    111224428.18
    123224428.21
    132112378.39
    142312378.63
    152136378.51
    162336378.57
    171212377.97
    183212378.34
    191236378.78
    203236378.99
    212124328.69
    222324328.77
    232124428.17
    242324428.22
    252224378.67
    262224378.78
    272224378.97
    282224378.67
    292224378.63
    下载: 导出CSV

    表  3  回归方程的方差分析

    Table  3.   Variance analysis of regression equation

    方差来源偏差平方和自由度均方FP显著性
    模型2.02140.144.560.0038**
    X10.03910.0391.220.2886
    X20.04610.0461.440.2499
    X30.2410.247.430.0164*
    X40.8610.8627.280.0001***
    X1X20.01610.0160.490.4940
    X1X30.006410.00640.200.6599
    X1X40.00002510.0000250.00078930.9780
    X2X30.008110.00810.260.6209
    X2X40.00022510.0002250.0071040.9340
    X3X40.000110.00010.0031570.9560
    X120.000659510.00065950.0210.8873
    X220.00147610.0014760.0470.8322
    X320.3110.319.910.0071**
    X420.5210.5216.340.0012**
    残差0.44140.0320.0080
    失拟项0.37100.371.920.2764
    纯误差0.07640.019
    总和2.4728
    注:*表示P<0.05;**表示P<0.01;***表示P<0.001。
    下载: 导出CSV
  • [1] MARKOWIAK P, SLIZEWSKA K. Effects of probiotics, prebiotics, and synbiotics on human health[J]. Nutrients,2017,9(9):1−30.
    [2] 曹振辉, 刘永仕, 潘洪彬, 等. 乳酸菌的益生功能及作用机制研究进展[J]. 食品工业科技,2015,36(24):366−377. [CAO Z H, LIU Y S, PAN H B, et al. Research progress on probiotic function and mechanism of lactic acid bacteria[J]. Science and Technology of Food Industry,2015,36(24):366−377.

    CAO Z H, LIU Y S, PAN H B, et al. Research progress on probiotic function and mechanism of lactic acid bacteria[J]. Science and Technology of Food Industry, 2015, 36(24): 366-377.
    [3] OH N S, JOUNG J Y, LEE J Y, et al. A synbiotic combination of Lactobacillus gasseri 505 and Cudrania tricuspidata leaf extract prevents hepatic toxicity induced by colorectal cancer in mice[J]. Journal of Dairy Science,2020,103(4):2947−2955. doi:  10.3168/jds.2019-17411
    [4] SAVAIANO D A, HUTKINS R W. Yogurt, cultured fermented milk, and health: A systematic review[J]. Nutrition Reviews,2021,79(5):599−614. doi:  10.1093/nutrit/nuaa013
    [5] OAK S J, JHA R. The effects of probiotics in lactose intolerance: A systematic review[J]. Critical Reviews in Food Science Nutrition,2019,59(11):1675−1683. doi:  10.1080/10408398.2018.1425977
    [6] ZHONG Z, HU R, ZHAO J, et al. Acetate kinase and peptidases are associated with the proteolytic activity of Lactobacillus helveticus isolated from fermented food[J]. Food Microbiology,2021,94:103651.
    [7] 张彦位, 路江浩, 鄢梦洁, 等. 益生菌对微生态系统的改善作用及其应用研究进展[J]. 食品工业科技,2021,42(4):369−379. [ZHANG Y W, LU J H, YAN M J, et al. Research progress of probiotics on improving microecosystem and its application[J]. Science and Technology of Food Industry,2021,42(4):369−379.

    ZHANG Y W, LU J H, YAN M J, et al. Research progress of probiotics on improving microecosystem and its application[J]. Science and Technology of Food Industry, 2021, 42(4): 369-379.
    [8] HUANG H R, TAO X, WAN C X, et al. In vitro probiotic characteristics of Lactobacillus plantarum ZDY 2013 and its modulatory effect on gut microbiota of mice[J]. Journal of Dairy Science,2015,98(9):5850−5861. doi:  10.3168/jds.2014-9153
    [9] WANG Y Y, GUO Y L, CHEN H, et al. Potential of Lactobacillus plantarum ZDY2013 and Bifidobacterium bifidum WBIN03 in relieving colitis by gut microbiota, immune, and anti-oxidative stress[J]. Canadian Journal of Microbiology,2018,64(5):327−337. doi:  10.1139/cjm-2017-0716
    [10] ZHANG Z H, TAO X, SHAH N P, et al. Antagonistics against pathogenic Bacillus cereus in milk fermentation by Lactobacillus plantarum ZDY2013 and its anti-adhesion effect on Caco-2 cells against pathogens[J]. Journal Dairy of Science,2016,99(4):2666−2674. doi:  10.3168/jds.2015-10587
    [11] ZHANG Z H, JIN M L, WANG K M, et al. Short-term intake of Lactiplantibacillus plantarum ZDY2013 fermented milk promotes homoeostasis of gut microbiota under enterotoxigenic Bacillus cereus challenge[J]. Food & Function,2021,12(11):5118−5129.
    [12] SONNENBURG E D, SONNENBURG J L. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates[J]. Cell Metabolism,2014,20(5):779−786. doi:  10.1016/j.cmet.2014.07.003
    [13] GOPAL P K, SULLIVAN P A, SMART J B. Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20[J]. International Dairy Journal,2001,11(1):19−25.
    [14] 薛雅莺, 袁卫涛, 杨海军. 低聚半乳糖的特性及应用前景[J]. 发酵科技通讯,2011,40(3):50−52. [XUE Y Y, YUAN W T, YANG H J. Characteristics and application prospect of galactose oligomeric[J]. Bulletin of Fermentation Science and Technology,2011,40(3):50−52. doi:  10.3969/j.issn.1674-2214.2011.03.020

    XUE Y Y, YUAN W T, YANG H J. Characteristics and application prospect of galactose oligomeric[J]. Bulletin of Fermentation Science and Technology, 2011, 40(3): 50-52. doi:  10.3969/j.issn.1674-2214.2011.03.020
    [15] MA C C, WASTI S, HUANG S, et al. The gut microbiome stability is altered by probiotic ingestion and improved by the continuous supplementation of galactooligosaccharide[J]. Gut Microbes,2020,12(1):1785252. doi:  10.1080/19490976.2020.1785252
    [16] 孙思睿, 张晟, 孟祥晨. 低聚半乳糖对植物乳杆菌生长及部分代谢的影响[J]. 食品工业科技,2017,38(17):95−98. [SUN S R, ZHANG C, MENG X C. Effects of galactose oligomeric on growth and partial metabolism of Lactobacillus plantarum[J]. Science and Technology of Food Industry,2017,38(17):95−98.

    SUN S R, ZHANG C, MENG X C. Effects of galactose oligomeric on growth and partial metabolism of Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2017, 38(17): 95-98.
    [17] AZAGRA B I, MASSOT C M, KNIPPING K, et al. Supplementation with 2'-FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats[J]. Front Cell Infect Microbiol,2018,8:372. doi:  10.3389/fcimb.2018.00372
    [18] SUN J W, LIANG W X, YANG X F, et al. Cytoprotective effects of galacto-oligosaccharides on colon epithelial cells via up-regulating miR-19b[J]. Life Sciences,2019,231:116589.
    [19] HASLE G, RAASTAD R, BJUNE G, et al. Can a galacto-oligosaccharide reduce the risk of traveller's diarrhoea? A placebo-controlled, randomized, double-blind study[J]. Journal of Travel Medicine,2017,24(5):1−9.
    [20] KWON J I, PARK Y, NOH D O, et al. Complex-oligosaccharide composed of galacto-oligosaccharide and lactulose ameliorates loperamide-induced constipation in rats[J]. Food Science and Biotechnology,2018,27(3):781−788. doi:  10.1007/s10068-017-0300-2
    [21] KIM M G, JO K Y, CHANG Y B, et al. Changes in the gut microbiome after galacto-oligosaccharide administration in loperamide-induced constipation[J]. Journal of Personalized Medicine,2020,10(4):1−15.
    [22] CHU H Q, TAO X, SUN Z G, et al. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway[J]. Life Sciences,2020,242:117220.
    [23] SEIJO M, BONANNO M S, VENICA C I, et al. A yoghurt containing galactooligosaccharides and having low-lactose level improves calcium absorption and retention during growth: Experimental study[J]. International Journal of Food Science & Technology,2021,57(1):48−56.
    [24] 张娜, 占英, 孟迎平, 等. 功能低聚糖对植物乳杆菌ZDY2013发酵乳发酵特性及冷藏效果的影响[J]. 现代食品科技,2021,37(11):34−42. [ZHANG N, ZHAN Y, MENG Y P, et al. Effects of functional oligosaccharides on fermentation characteristics and refrigeration effect of Lactobacillus plantarum ZDY2013 fermented milk[J]. Modern Food Science and Technology,2021,37(11):34−42.

    ZHANG N, ZHAN Y, MENG Y P, et al. Effects of functional oligosaccharides on fermentation characteristics and refrigeration effect of Lactobacillus plantarum ZDY2013 Fermented milk[J]. Modern Food Science and Technology, 2021, 37(11): 34-42.
    [25] PENG L, ZHAO K, CHEN S, et al. Whole genome and acid stress comparative transcriptome analysis of Lactiplantibacillus plantarum ZDY2013[J]. Archives of Microbiology,2021,203:2795−2807. doi:  10.1007/s00203-021-02240-7
    [26] 张志鸿, 许恒毅, 魏华. 基于PCR方法检测蜡样芽孢杆菌的研究进展[J]. 食品工业科技,2013,34(22):335−342. [ZHANG Z H, XU H Y, WEI H. Progress in the detection of Bacillus cereus based on PCR[J]. Science and Technology of Food Industry,2013,34(22):335−342.

    ZHANG Z H, XU H Y, WEI H. Progress in the detection of Bacillus cereus based on PCR[J]. Science and Technology of Food Industry, 2013, 34(22): 335-342.
    [27] 蔡淼, 郝晓娜, 罗天淇, 等. 植物乳杆菌YW11胞外多糖对酸乳加工特性的影响[J]. 食品科学,2021,42(14):39−45. [CAO M, HAO X N, LUO T Q, et al. Effects of extracellular polysaccharide of Lactobacillus plantarum YW11 on processing characteristics of yoghurt[J]. Food Science,2021,42(14):39−45. doi:  10.7506/spkx1002-6630-20200511-115

    CAO M, HAO X N, LUO T Q, et al. Effects of extracellular polysaccharide of Lactobacillus plantarum YW11 on processing characteristics of yoghurt[J]. Food Science, 2021, 42(14): 39-45. doi:  10.7506/spkx1002-6630-20200511-115
    [28] WANG H, WANG C, WANG M, et al. Chemical, physiochemical, and microstructural properties, and probiotic survivability of fermented goat milk using polymerized whey protein and starter culture kefir mild 01[J]. Journal of Food Science,2017,82(11):2650−2658. doi:  10.1111/1750-3841.13935
    [29] ARNESEN L P, FAGERLUND A, GRANUM P E. From soil to gut: Bacillus cereus and its food poisoning toxins[J]. FEMS Microbiology Reviews,2008,32(4):579−606. doi:  10.1111/j.1574-6976.2008.00112.x
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  6
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础