• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

响应面法优化草菇抗氧化肽的酶法制备工艺

王耀冉 陈明杰 查磊 魏晨颖 李治平 赵妍

王耀冉,陈明杰,查磊,等. 响应面法优化草菇抗氧化肽的酶法制备工艺[J]. 食品工业科技,2022,43(15):227−233. doi:  10.13386/j.issn1002-0306.2021110073
引用本文: 王耀冉,陈明杰,查磊,等. 响应面法优化草菇抗氧化肽的酶法制备工艺[J]. 食品工业科技,2022,43(15):227−233. doi:  10.13386/j.issn1002-0306.2021110073
WANG Yaoran, CHEN Mingjie, ZHA Lei, et al. Optimization of Enzymatic Preparation Technology of Antioxidant Peptide from Volvariella volvacea by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(15): 227−233. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110073
Citation: WANG Yaoran, CHEN Mingjie, ZHA Lei, et al. Optimization of Enzymatic Preparation Technology of Antioxidant Peptide from Volvariella volvacea by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(15): 227−233. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110073

响应面法优化草菇抗氧化肽的酶法制备工艺

doi: 10.13386/j.issn1002-0306.2021110073
基金项目: 上海市科技兴农重点攻关项目(2020-02-08-00-12-F01479)。
详细信息
    作者简介:

    王耀冉(1997−),女,硕士研究生,研究方向:食品生化,E-mail:1784835766@qq.com

    通讯作者:

    赵妍(1981−),女,博士,研究员,研究方向:食用菌生理生化,E-mail:jiandan289@126.com

  • 中图分类号: TS201.2

Optimization of Enzymatic Preparation Technology of Antioxidant Peptide from Volvariella volvacea by Response Surface Methodology

  • 摘要: 以草菇为原料提取蛋白质,蛋白酶酶解蛋白制备抗氧化肽。以DPPH自由基清除率为指标,在单因素实验基础上,结合响应面法优化草菇抗氧化肽的提取工艺。通过超滤分离纯化获得不同分子量的肽段,采用DPPH自由基清除率、Fe2+螯合率和还原力法测定超滤组分的抗氧化活性。结果表明:中性蛋白酶为最优酶解蛋白酶,最佳酶解工艺条件为酶解时间3.70 h,加酶量3.81%,底物质量浓度3.11 g/100 mL,在此条件下,酶解产物的DPPH自由基清除率为69.85%±2.52%。通过超滤分级制备所得分子量最小的肽段F1(<3 kDa)具有最高的抗氧化活性,其DPPH自由基清除率、Fe2+螯合率和还原力分别为78.81%±1.56%、91.05%±1.65%、0.47±0.02。草菇抗氧化肽可作为潜在的天然抗氧化剂来源得到开发利用。
  • 图  1  酶种类对草菇蛋白酶解产物抗氧化活性的影响

    Figure  1.  Effect of enzyme types on antioxidant activity of V. volvacea protein hydrolysates

    注:VPI:草菇蛋白;AH:碱性蛋白酶水解产物;TH:胰蛋白酶水解产物;NH:中性蛋白酶水解产物;PH:木瓜蛋白酶水解产物;ATH:碱性-胰蛋白酶水解产物;ANH:碱性-中性蛋白酶水解产物;APH:碱性-木瓜蛋白酶水解产物;不同小写字母表示差异显著P<0.05,图2~图4同。

    图  2  酶解时间对DPPH自由基清除率的影响

    Figure  2.  Effect of hydrolysis time on DPPH free radical scavenging rate

    图  3  加酶量对DPPH自由基清除率的影响

    Figure  3.  Effect of enzyme dosage on DPPH free radical scavenging rate

    图  4  底物质量浓度对DPPH自由基清除率的影响

    Figure  4.  Effect of substrate concentration on DPPH free radical scavenging rate

    图  5  各因素交互作用的曲面图和等高线图

    Figure  5.  Surface maps and contour maps for each factor interaction

    表  1  不同酶酶解条件

    Table  1.   Hydrolysis conditions for the various enzymatic hydrolyses

    蛋白酶温度
    (℃)
    pH酶解时间
    (h)
    加酶量
    (%)
    底物质量浓度
    (g/100 mL)
    碱性蛋白酶5010.0443
    中性蛋白酶457.5443
    胰蛋白酶378.0443
    木瓜蛋白酶377.0443
    碱性-中性蛋白酶50~4510.0~7.5443
    碱性-胰蛋白酶50~3710.0~8.0443
    碱性-木瓜蛋白酶50~3710.0~7.0443
    下载: 导出CSV

    表  2  响应面试验因素水平

    Table  2.   Factors and levels of response surface experiment

    因素水平
    −101
    A 酶解时间(h)345
    B 加酶量(%)345
    C 底物质量浓度(g/100 mL)234
    下载: 导出CSV

    表  3  响应面试验设计方案与结果

    Table  3.   Experimental scheme and results of response surface

    试验号因素响应值
    A 酶解时间B 加酶量C 底物质量浓度DPPH自由基清除率(%)
    10−1−152.67
    200068.85
    301−146.42
    401149.03
    5−11056.72
    600068.79
    71−1048.46
    8−10157.82
    900069.54
    1000070.26
    110−1153.15
    12−10−143.50
    1300068.81
    14−1−1060.77
    1510137.65
    1610−143.50
    1711046.14
    下载: 导出CSV

    表  4  回归模型方差分析及回归方程系数显著性检验

    Table  4.   Significance test for variance analysis and coefficient constants of regression models

    来源平方和自由度均方FP显著性
    模型1854.939206.10175.68<0.0001**
    A231.771231.77197.56<0.0001**
    B35.03135.0329.860.0009**
    C16.70116.7014.240.0070**
    AB0.748210.74820.63780.4508
    AC101.711101.7186.69<0.0001**
    BC1.1311.130.96680.3582
    A2461.011461.01392.96<0.0001**
    B2139.881139.88119.23<0.0001**
    C2730.171730.17622.39<0.0001**
    残差8.2171.17
    失拟6.5432.185.230.0720不显著
    净误差1.6740.4174
    总和1863.1416
    决定系数R20.9956
    校正决定系数RAdj20.9899
    注: *表示显著,P<0.05;**表示极显著,P<0.01。
    下载: 导出CSV

    表  5  中性蛋白酶酶解产物及其超滤组分的抗氧化活性

    Table  5.   Antioxidant activities of neutral protease hydrolysates and their ultrafiltration components

    DPPH自由基清除率(%)Fe2+螯合率(%)还原力
    酶解液69.85±2.52c83.71±1.00b0.35±0.03c
    F1(<3 kDa)78.81±1.56a91.05±1.65a0.47±0.02a
    F2(3~10 kDa)73.32±0.49b83.18±1.16b0.42±0.01b
    F3(>10 kDa)58.51±1.07d74.06±1.95c0.30±0.07d
    注:同列不同的字母表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 戴玉成, 周丽伟, 杨祝良, 等. 中国食用菌名录[J]. 菌物学报,2010,29(1):1−21. [DAI Y C, ZHOU L W, YANG Z L, et al. A revised checklist of edible fungi in China[J]. Mycosystema,2010,29(1):1−21.

    DAI Y C, ZHOU L W, YANG Z L, et al. A revised checklist of edible fungi in China[J]. Mycosystema, 2010, 29(1): 1-21.
    [2] 刘学铭, 廖森泰, 陈智毅. 草菇的化学特性与药理作用及保鲜与加工研究进展[J]. 食品科学,2011,32(1):260−264. [LIU X M, LIAO S T, CHEN Z Y. Research advance in chemical properties, pharmacological activity of straw mushroom as well as fresh keeping and processing technologies for it[J]. Food Science,2011,32(1):260−264.

    LIU X M, LIAO S T, CHEN Z Y. Research advance in chemical properties, pharmacological activity of straw mushroom as well as fresh keeping and processing technologies for it[J]. Food Science, 2011, 32(1): 260-264.
    [3] 秦惠娟, 杨健华, 陈屏, 等. 草菇子实体GC-MS分析及不同极性部位体外抗氧化活性研究[J]. 食品工业科技,2016,37(21):318−322, 328. [QIN H J, YANG J H, CHEN P, et al. GC-MS analysis of Volvariella volvacea fruiting bodies and different solvent extracts antioxidant activities in vitro[J]. Science and Technology of Food Industry,2016,37(21):318−322, 328.

    QIN H J, YANG J H, CHEN P, et al. GC-MS analysis of Volvariella volvacea fruiting bodies and different solvent extracts antioxidant activities in vitro[J]. Science and Technology of Food Industry, 2016, 37(21): 318-322+328.
    [4] ROY A, PRASAD P, GUPTA N. Volvariella volvacea: A macrofungus having nutritional and health potential[J]. Asian Journal of Pharmacy and Technology,2014,4(2):110−113.
    [5] BREENE W M. Nutritional and medicinal value of specialty mushrooms[J]. Journal of Food Protection,1990,53(10):883−894. doi:  10.4315/0362-028X-53.10.883
    [6] BANIK S, NANDI R. Effect of supplementation of rice straw with biogas residual slurry manure on the yield, protein and mineral contents of Volvariella volvacea mushroom[J]. Journal of Scientific and Industrial Research,2000,59(5):407−412.
    [7] TRIYONO S, HARYANTO A, TELAUMBANUA M, et al. Cultivation of straw mushroom (Volvariella volvacea) on oil palm empty fruit bunch growth medium[J]. International Journal of Recycling of Organic Waste in Agriculture,2019,8(4):381−392. doi:  10.1007/s40093-019-0259-5
    [8] 何焕清, 肖自添, 彭洋洋, 等. 草菇栽培技术发展历程与创新研究进展[J]. 广东农业科学,2020,47(12):53−61. [HE H Q, XIAO Z T, PENG Y Y, et al. Development history and innovation research progress of straw mushroom cultivation technology[J]. Guangdong Agricultural Sciences,2020,47(12):53−61.

    HE H Q, XIAO Z T, PENG Y Y, et al. Development history and innovation research progress of straw mushroom cultivation technology[J]. Guangdong Agricultural Sciences, 2020, 47(12): 53-61.
    [9] 钱礼顺. 超声辅助提取草菇子实体多糖及其结构表征与免疫活性评价[D]. 镇江: 江苏大学, 2019.

    QIAN S L. Ultrasound-assisted extraction optimization, structure characterization and immunomodulatory activity[D]. Zhenjiang: Jiangsu University, 2019.
    [10] KALAVA S V, MENON S G. In vitro free radical scavenging activity of aqueous extract from the mycella of Volvariella volvacea (bulliard ex fries) singer[J]. International Journal Current Pharmaceutical Research,2012,4(3):7.
    [11] LORENZO J M, MUNEKATA P E, GÓMEZ B, et al. Bioactive peptides as natural antioxidants in food products: A review[J]. Trends in Food Science & Technology,2018,79:136−147.
    [12] LU X, ZHANG L, SUN Q, et al. Extraction, identification and structure-activity relationship of antioxidant peptides from sesame (Sesamum indicum L.) protein hydrolysate[J]. Food Research International,2019,116:707−716. doi:  10.1016/j.foodres.2018.09.001
    [13] FENG Y X, RUAN G R, JIN F, et al. Purification, identification, and synthesis of five novel antioxidant peptides from Chinese chestnut (Castanea mollissima Blume) protein hydrolysates[J]. Food Science and Technology,2018,92:40−46.
    [14] JIN J E, AHN C B, JE J Y. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed ark shell (Scapharca subcrenata)[J]. Process Biochemistry,2018,72:170−176. doi:  10.1016/j.procbio.2018.06.001
    [15] NIMALARATNE C, BANDARA N, WU J. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white[J]. Food Chemistry,2015,188:467−472. doi:  10.1016/j.foodchem.2015.05.014
    [16] JIN D X, LIU X I, ZHENG X Q, et al. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides[J]. Food Chemistry,2016,204:427−436. doi:  10.1016/j.foodchem.2016.02.119
    [17] CUMBY N, ZHONG Y, NACZK M, et al. Antioxidant activity and water-holding capacity of canola protein hydrolysates[J]. Food Chemistry,2008,109(1):144−148. doi:  10.1016/j.foodchem.2007.12.039
    [18] WANG L, MAO X Y, CHENG X, et al. Effect of enzyme type and hydrolysis conditions on thein vitro angiotensin I-converting enzyme inhibitory activity and ash content of hydrolysed whey protein isolate[J]. International Journal of Food Science & Technology,2010,45(4):807−812.
    [19] LI X X, HAN L J, CHEN L J. In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal[J]. Journal of the Science of Food and Agriculture,2008,88(9):1660−1666. doi:  10.1002/jsfa.3264
    [20] 马梦娇. 中华鳖肉抗氧化肽的制备及其抗衰老功能研究[D]. 无锡: 江南大学, 2020.

    MA M J. Preparation of antioxidant peptides from Chinese soft-shelled turtle and its anti-aging activity[D]. Wuxi: Jiangnan University, 2020.
    [21] DONG Y, QI G, YANG Z, et al. Preparation, separation and antioxidant properties of hydrolysates derived from Grifola frondosa protein[J]. Analytical and Bioanalytical Chemistry,2015,33(6):500−506.
    [22] ALASHI A M, BLANCHARD C L, MAILER R J, et al. Antioxidant properties of Australian canola meal protein hydrolysates[J]. Food Chemistry,2014,146:500−506. doi:  10.1016/j.foodchem.2013.09.081
    [23] 宁诗文, 崔珊珊, 尚宏丽. 响应面法优化大黄花鱼肉蛋白水解工艺及多肽抗氧化性研究[J]. 食品工业科技,2020,41(13):219−226. [NING S W, CUI S S, SHANG H L. Optimization of the protein hydrolysis process by response surface method and the antioxidant properties of polypeptides in large yellow croaker[J]. Science and Technology of Food Industry,2020,41(13):219−226.

    NING S W, CUI S S, SHANG H L. Optimization of the protein hydrolysis process by response surface method and the antioxidant properties of polypeptides in Large Yellow Croaker[J]. Science and Technology of Food Industry, 2020, 41(13): 219-226.
    [24] 谭梦. 低抗原性乳清蛋白的酶法制备及风味改善[D]. 杭州: 浙江大学, 2016.

    TAN M. The preparation of low antigenic whev protein by enzyme and flavor improvement[D]. Hangzhou: Zhejiang University, 2016.
    [25] WANG D Y, SHAHIDI F. Protein hydrolysate from turkey meat and optimization of its antioxidant potential by response surface methodology[J]. Poult, 2018, 97(5): 1824−1831.
    [26] 孙菁茹, 富天昕. 响应面法优化绿豆抗氧化肽的制备工艺[J]. 中国食品添加剂,2020,31(6):55−60. [SUN J R, FU T X. Optimization of preparation process of mung bean antioxidant peptideby response surface methodology[J]. China Food Additives,2020,31(6):55−60.

    SUN J R, FU T X. Optimization of preparation process of mung bean antioxidant peptideby response surface methodology[J]. China Food Additives, 2020, 31(6): 55-60.
    [27] MA Y Y, XIONG Y L, ZHAI J J, et al. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein[J]. Food Chemistry,2010,118(3):582−588. doi:  10.1016/j.foodchem.2009.05.024
    [28] 马洪鑫. 藜麦蛋白抗氧化肽的制备及其作用机制研究[D]. 兰州: 西北民族大学, 2021.

    MA H X. Preparation and mechanism of quinoa protein antioxidnat peptides[D]. LanZhou: Northest Minzu University, 2021.
    [29] FAN T, HU J G, FU L D, et al. Optimization of enzymolysis-ultrasonic assisted extraction of polysaccharides from Momordica charabtia L. by response surface methodology[J]. Carbohydrate Polymers,2015,115:701−706. doi:  10.1016/j.carbpol.2014.09.009
    [30] ZHANG C, FAN D D, SHANG L A, et al. Optimization of fermentation process for human-like collagen production of recombinant Escherichia coli using response surface methodology[J]. Chinese Journal of Chemical Engineering,2010,18(1):137−142. doi:  10.1016/S1004-9541(08)60334-1
    [31] HAO L, GAO X, ZHOU T, et al. Angiotensin I-converting enzyme (ACE) inhibitory and antioxidant activity of umami peptides after in vitro gastrointestinal digestion[J]. Journal of Agricultural and Food Chemistry,2020,68(31):8232−8241. doi:  10.1021/acs.jafc.0c02797
    [32] KORHONEN H, PIHLANTO A. Bioactive peptides: Production and functionality[J]. International Dairy Journal,2006,16(9):945−960. doi:  10.1016/j.idairyj.2005.10.012
    [33] 刘晓艺, 周玉岩, 过利敏, 等. 不同分子量红花籽抗氧化肽稳定性研究[J/OL]. 食品工业科技: 1−14[2022-06-13]. DOI: 10.13386/j.issn1002-0306.2021100248.

    LIU Z Y, ZHOU Y Y, GUO L M, et al. Stydy on the stability of antioxidant peptides from safflower with different molecular weight[J/OL]. Science and Technology of Food Industry: 1−14 [2022-06-13]. DOI: 10.13386/j.issn1002-0306.2021100248.
    [34] KARAMI Z, AKBARI A B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties[J]. Journal of Food Science and Technology,2019,56(2):535−547. doi:  10.1007/s13197-018-3549-4
    [35] YANG J, HUANG J C, DONG X L, et al. Purification and identification of antioxidant peptides from duck plasma proteins[J]. Food Chemistry,2020,319:126534. doi:  10.1016/j.foodchem.2020.126534
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  15
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 网络出版日期:  2022-06-30
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础