• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

食用木薯块根冻结特性及代谢产物分析

林立铭 王琴飞 余厚美 徐缓 张振文

林立铭,王琴飞,余厚美,等. 食用木薯块根冻结特性及代谢产物分析[J]. 食品工业科技,2022,43(15):1−8. doi:  10.13386/j.issn1002-0306.2021110205
引用本文: 林立铭,王琴飞,余厚美,等. 食用木薯块根冻结特性及代谢产物分析[J]. 食品工业科技,2022,43(15):1−8. doi:  10.13386/j.issn1002-0306.2021110205
LIN Liming, WANG Qinfei, YU Houmei, et al. Freezing Characteristics and Metabolite Analysis of Edible Cassava Root[J]. Science and Technology of Food Industry, 2022, 43(15): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110205
Citation: LIN Liming, WANG Qinfei, YU Houmei, et al. Freezing Characteristics and Metabolite Analysis of Edible Cassava Root[J]. Science and Technology of Food Industry, 2022, 43(15): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110205

食用木薯块根冻结特性及代谢产物分析

doi: 10.13386/j.issn1002-0306.2021110205
基金项目: 国家重点研发计划项目(2020YFD1001200);现代农业产业技术体系(CARS-11, CCARS-HNZZW)。
详细信息
    作者简介:

    林立铭(1986−),男,硕士,助理研究员,研究方向:农产品加工与贮藏,E-mail:liminglin2010@126.com

    通讯作者:

    张振文(1975−),男,博士,研究员,研究方向:农产品加工与贮藏,E-mail:scuta96@catas.cn

  • 中图分类号: S379.2

Freezing Characteristics and Metabolite Analysis of Edible Cassava Root

  • 摘要: 为了解木薯块根冻结特性及其代谢产物,以食用木薯品种“华南9号”为研究对象,通过电导率法测定块根头、中和尾3个部位的冻结变化规律及相关影响因素,结合非靶向代谢组学进行差异代谢物分析。结果表明:木薯块根不同部位冰点范围为−0.6至−1.1 ℃,但发生冻结的时间不一致;不同部位的可溶性固形物含量与淀粉含量最高值均出现在头部,分别为7.00%和26.84%,但各部位间的含量差异不显著(P>0.05),而含水量最高值出现在尾部,为64.07%;相关性结果分析发现,冰点与可溶性固形物、含水量呈负相关关系,与淀粉含量呈正相关关系。非靶向代谢组学分析发现,与对照相比冰温处理存在41个具有显著差异表达的代谢物,以苯丙氨酸代谢途径富集程度最高,共有9个显著差异代谢物。该途径中马尿酸-苯甲酸-水杨酸通路的马尿酸、苯甲酸表达上调,这可能与块根对低温应答响应有关。该研究结果可为今后木薯块根低温贮藏提供理论参考。
  • 图  1  块根取样示意图

    Figure  1.  Sampling for cassava root

    图  2  块根不同部位冻结曲线

    Figure  2.  The freezing curve type of different parts of cassava root

    注:a、b、c分别为块根头部、中部、尾部。

    图  3  两种离子模式下的PLS-DA得分图及验证图

    Figure  3.  PLS-DA score diagram and valid diagram under two ion modes

    注:数字1~6分别为对照样本生物学重复名称,7~12为处理样本生物学重复名称;A、B分别为正、负离子模式。

    图  4  KEGG富集气泡图

    Figure  4.  KEGG enrichment scatterplot

    图  5  差异代谢物ROC曲线图

    Figure  5.  ROC curve of differential metabolites

    图  6  苯丙氨酸代谢通路

    Figure  6.  Phenylalanine metabolism pathway

    表  1  块根不同部位成分差异比较

    Table  1.   Comparison of components for different parts of cassava roots

    成分(%)头部中部尾部
    含水量60.97±0.65B63.33±0.50A64.07±0.42A
    可溶性固形物7.00±0.10a6.90±0.20a6.53±0.15a
    淀粉含量26.84±0.44a26.42±0.12a26.47±0.54a
    注:同行不同小写字母表示差异显著(P<0.05);同行不同大写字母表示差异极显著(P<0.01)。
    下载: 导出CSV

    表  2  冰点影响因素相关分析

    Table  2.   Effects of relative analysis for freezing temperature

    可溶性固形物含水量淀粉含量冰点温度
    可溶性固形物1
    含水量−0.80314**1
    淀粉含量−0.01079−0.228331
    冰点温度−0.22729−0.223720.64181
    注:“**”表示相关性达极显著水平(P<0.01)。
    下载: 导出CSV

    表  3  冰温处理与常温对照的差异代谢物

    Table  3.   Differential metabolites between ice temperature treatment and normal temperature control

    序号名称化学式PROCVIPUp/
    down
    1Dihexylamine二己胺C12H27N0.00112112.399198
    2Decanoic acid癸酸C10H20O20.0022510.9722222.28682
    3(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol (2R,3S,4S,5R,6R)2-(羟甲基)-6-(2-苯乙氧基)氧烷-3,4,5-三醇C14H20O60.00256412.310237
    44-Coumaric acid 4-香豆酸C9H8O30.00581812.158125
    5ethyl2-methyl-1,5-diphenyl-1H-pyrrole-3-carboxylate 2-甲基-1,5-二苯基-1H-吡咯-3-羧酸乙酯C20H19NO20.0084750.8611112.079473
    6Hippuric Acid马尿酸C9H9NO30.0087850.9722222.093368
    72,3,4,9-Tetrahydro-1H-β-carboline-3-carboxylic acid 2,3,4,9-四氢-1H-β-卡波林-3-羧酸C12H12N2O20.0091270.8888892.042372
    8Xanthurenic acid黄脲酸C10H7NO40.0116670.9444442.036992
    9Azelaic acid壬二酸C9H16O40.0133630.9444442.043326
    105-Oxoproline 5-恶丙啉C5H7NO30.0135380.9444442.122606
    11(12Z)-9,10,11-trihydroxyoctadec-12-enoic acid (12Z)-9,10,11-三羟基十八碳-12-烯酸C18H34O50.0219750.8888891.891101
    12(11E,15Z)-9,10,13-trihydroxyoctadeca-11,15-dienoic acid (11E,15Z)-9,10,13-三羟基十八碳-11,15-二烯酸C18H32O50.0228020.9166671.912454
    13L-Aspartic acid L-天门冬氨酸C4H7NO40.0241270.8611111.864644
    146,7-Dimethoxy-2-oxo-2H-chromen-8-yl β-D-glucopyranoside 6,7-二甲氧基-2-氧基-2H-铬-8-基β-D-吡喃葡萄糖苷C17H20O100.0253780.8611111.823265
    15Valeric Acid戊酸C5H10O20.0257770.9444442.051199
    162-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-6-methyl-4H-chromen-4-one 2-(3,4-二羟基苯基)-3,5,7-三羟基-6-甲基-4H-铬-4-酮C16H12O70.0260040.8888891.816155
    17N6,N6,N6-Trimethyl-L-lysine N6,N6,N6-三甲基-L-赖氨酸C9H20N2O20.0260490.8333331.930167
    18Deoxycholic acid脱氧胆酸C24H40O40.0260870.8611111.951633
    192-(2-hydroxy-3-methylbutanamido)-4-methylpentanoic acid 2-(2-羟基-3-甲基丁胺基)-4-甲基戊酸C11H21NO40.0264290.8888891.832908
    20LPE 18:3C23 H42NO7P0.0265060.8333331.989631
    21Viscumamide槲寄生酰胺C30H55N5O50.0277310.8888891.958203
    225-Methyluridine 5-甲基尿苷C10H14N2O60.02810.9166671.980486
    23Dodecanedioic Aicd十二烷二酸C12H22O40.0287970.9166671.88303
    24Argininosuccinic acid精氨琥珀酸C10H18N4O60.0293370.8333331.874336
    25Phe-Pro苯丙氨酸-脯氨酸C14H18N2O30.0295170.8611111.801609
    262-(acetylamino)-3-[4-(acetylamino)phenyl]acrylic acid 2-(乙酰氨基)-3-[4-(乙酰氨基)苯基]丙烯酸C13H14N2O40.031580.8611111.791158
    27Hesperetin 5-O-glucoside橙皮素5-O-葡萄糖苷C22H24O110.037850.8333331.907904
    28gamma-Glu-Leu γ-谷氨酸-亮氨酸C11H20N2O50.0388720.8611111.735533
    29Benzoic acid苯甲酸C7H6O20.0389530.8888891.802102
    302-[5-(2-hydroxypropyl)oxolan-2-yl]propanoic acid 2-[5-(2-羟丙基)恶唑烷-2-基]丙酸C10H18O40.039150.8611111.831315
    31Cysteinylglycine半胱氨酸甘氨酸C5H10N2O3S0.0393450.8333331.705278
    32Cytidine 5'-diphosphate胞苷5'-二磷酸C9H14N3NaO10P20.0395540.8888891.701048
    33Isophorone异佛尔酮C9H14O0.0398910.8611111.792245
    34(3R)-4,4-Dimethyl-2-oxotetrahydro-3-furanyl beta-D-glucopyranoside (3R)-4,4-二甲基-2-氧代四氢-3-呋喃基β-D-吡喃葡萄糖苷C12H20O80.0416980.8055561.871978
    35Kaempferol山奈酚C15H10O60.0427480.8611111.726868
    368-methylretusin-7-O-beta-D-glucopyranoside 8-甲基瑞汀-7-O-β-D-吡喃葡萄糖苷C24H26O120.0438450.8888891.776781
    37Nicotinamide-N-oxide烟酰胺-N-氧化物C6H6N2O20.0453860.8333331.758254
    38Coumarin香豆素C9H6O20.0462190.8333331.761383
    391,7-bis(4-hydroxyphenyl)-5-methoxyheptan-3-one 1,7-双(4-羟基苯基)-5-甲氧基庚烷-3-酮C20H24O40.0470740.8055561.737262
    40Decursinol癸醇C14H14O40.0474560.9166671.729854
    41YQHC20H26N6O60.0498770.9444441.679336
    下载: 导出CSV
  • [1] IHEMERE U, ARIAS-GARZON D, LAWRENCE S, et al. Genetic modification of cassava for enhanced starch production[J]. Plant Biotechnology Journal,2006,4(4):453−465. doi:  10.1111/j.1467-7652.2006.00195.x
    [2] 王绍帆, 黄欢, 索慧敏, 等. 冷冻贮藏对马铃薯泥香气成分的影响[J]. 食品研究与开发,2020,41(16):45−50. [WANG S F, HUANG H, SUO H M, et al. Effects of frozen storage on aroma components of potato purse[J]. Food Research and Development,2020,41(16):45−50. doi:  10.12161/j.issn.1005-6521.2020.16.007

    WANG S F, HUANG H, SUO H M, et al. Effects of frozen storage on aroma components of potato purse[J]. Food Research and Development, 2020, 41(16): 45-50. doi:  10.12161/j.issn.1005-6521.2020.16.007
    [3] 孙晶, 康怀彬. 食品冰温贮藏技术的研究进展[J]. 农产品加工,2019,22:82−86. [SUN J, KANG H B. Research progress of food ice-temperature storage technology[J]. Farm Products Processing,2019,22:82−86.

    SUN J, KANG H B. Research progress of food ice-temperature storage technology[J]. Farm Products Processing, 2019, 22: 82-86.
    [4] 林晓姿, 黄飞, 何志刚, 等. 基于冰点测定的3种福建主栽蔬菜贮藏技术研究[J]. 福建农业学报,2015,30(5):516−521. [LIN X Z, HUANG F, HE Z G, et al. Study on the storage technology for three main vegetable varieties in Fujian based on freezing point measurement[J]. Fujian Journal of Agricultural Sciences,2015,30(5):516−521. doi:  10.3969/j.issn.1008-0384.2015.05.018

    LIN X Z, HUANG F, HE Z G, et al. Study on the storage technology for three main vegetable varieties in Fujian based on freezing point measurement[J]. Fujian Journal of Agricultural Sciences, 2015, 30(5): 516-521. doi:  10.3969/j.issn.1008-0384.2015.05.018
    [5] 杨洪钦, 谢树森. 生物组织热传递的物理基础[J]. 福建师范大学学报,2001(1):40−44. [YANG H Q, XIE S S. A physical basis for biological heat transfer[J]. Journal of Fujian Normal University (Natural Science Edition),2001(1):40−44.

    YANG H Q, XIE S S. A physical basis for biological heat transfer[J]. Journal of Fujian Normal University (Natural Science Edition), 2001, 1: 40-44.
    [6] 谢晶. 食品冷冻冷藏原理与技术[M]. 北京: 化学工业出版社, 2005.

    XIE J. Principle and technology of food refrigeration[M]. Beijing: Chemical Industry Press, 2005.
    [7] 张辉玲, 胡位荣, 庞学群, 等. 冰温与SO2缓释剂对龙眼贮藏的影响[J]. 园艺学报,2006,33(6):1325−1328. [ZHANG H L, HU W R, PANG X Q, et al. Effect of ice temperature technique and SO2 releaser on storage of Longan fruits[J]. Acta Horticulturae Sinica,2006,33(6):1325−1328. doi:  10.3321/j.issn:0513-353X.2006.06.031

    ZHANG H L, HU W R, PANG X Q, et al. Effect of ice temperature technique and SO2 releaser on storage of Longan fruits[J]. Acta Horticulturae Sinica, 2006, 33(6): 1325-1328. doi:  10.3321/j.issn:0513-353X.2006.06.031
    [8] 胡位荣, 张昭其, 蒋跃明, 等. 采后荔枝冰温贮藏的适宜参数研究[J]. 中国农业科学,2005,38(4):797−802. [HU W R, ZHANG Z Q, JIANG Y M, et al. Study on the parameter of ice-temperature storage in Litchi (Litchi chinensis Sonn.)[J]. Scientia Agricultura Sincia,2005,38(4):797−802. doi:  10.3321/j.issn:0578-1752.2005.04.024

    HU W R, ZHANG Z Q, JIANG Y M, et al. Study on the parameter of ice-temperature storage in Litchi (Litchi chinensis Sonn. )[J]. Scientia Agricultura Sincia, 2005, 38(4): 797-802. doi:  10.3321/j.issn:0578-1752.2005.04.024
    [9] 任杰, 张素丽, 冷平, 等. 不同处理对甜樱桃近生物冰点贮藏效果研究[J]. 中国农业大学学报,2009,14(2):75−80. [REN J, ZHANG S L, LENG P, et al. Effects of different treatments on controlled biological freezing-point storage of sweet cherries[J]. Journal of China Agricultural University,2009,14(2):75−80. doi:  10.3321/j.issn:1007-4333.2009.02.014

    REN J, ZHANG S L, LENG P, et al. Effects of different treatments on controlled biological freezing-point storage of sweet cherries[J]. Journal of China Agricultural University, 2009, 14(2): 75- 80. doi:  10.3321/j.issn:1007-4333.2009.02.014
    [10] 林向东, 张琪, 荆仕聪, 等. 用电导率法测定莲藕冻结点的研究[J]. 食品科学,2007,4:83−86. [LIN X D, ZHANG Q, JING S C, et al. Study on lotus root freezing point assay by electrical conductivity method[J]. Food Science,2007,4:83−86. doi:  10.3321/j.issn:1002-6630.2007.04.015

    LIN X D, ZHANG Q, JIN S C, et al. Study on lotus root freezing point assay by electrical conductivity method[J]. Food Science, 2007, 4: 83-86. doi:  10.3321/j.issn:1002-6630.2007.04.015
    [11] 王丹, 辛力, 孙蕾, 等. 桑葚的冻结特性及相关影响因素分析[J]. 天津农业科学,2017,23(9):7−10. [WANG D, XIN L, SUN L, et al. Study on the freezing property of mulberry and related influencing factors[J]. Tianjin Agricultural Sciences,2017,23(9):7−10. doi:  10.3969/j.issn.1006-6500.2017.09.002

    WANG D, XIN L, SUN L, et al. Study on the freezing property of mulberry and related influencing factors[J]. Tianjin Agricultural Sciences, 2017, 23(9): 7-10. doi:  10.3969/j.issn.1006-6500.2017.09.002
    [12] 张哲, 郎元路, 严雷, 等. 冻结速率对果蔬冰点的影响[J]. 海南师范大学学报,2020,33(4):433−440. [ZHANG Z, LANG Y L, YAN L, et al. Effect of cooling rate on freezing point of fruit and vegetables[J]. Journal of Hainan Normal University (Natural Science),2020,33(4):433−440.

    ZHANG Z, LANG Y L, YAN L, et al. Effect of cooling rate on freezing point of fruit and vegetables[J]. Journal of Hainan Normal University (Natural Science), 2020, 33(4): 433-440.
    [13] 彭艳芳. 枣果营养成分分析与冬枣货架期保鲜研究[D]. 保定: 河北农业大学, 2003.

    PENG Y F. Study on fruit nutrition and shelf life of Chinese Jujube (Ziziphus jujuba Mill.)[D]. Baoding: Hebei Agricultural University, 2003.
    [14] 魏艳, 黄洁, 林立铭, 等. 木薯块根不同部位的营养成分研究[J]. 西北农林科技大学学报,2016,44(6):53−61. [WEI Y, HUANG J, LIN L M, et al. Nutrients in different parts of cassava root[J]. Journal of Northwest A & F University (Nat. Sci. Ed),2016,44(6):53−61.

    WEI Y, HUANG J, LIN L M, et al. Nutrients in different parts of cassava root[J]. Journal of Northwest A & F University (Nat. Sci. Ed), 2016, 44(6): 53-61.
    [15] 宋丽荣, 陈淑湘, 林向东. 食品物料冻结点测定方法研究[J]. 食品科学,2011,32:126−131. [SONG L R, CHEN S X, LIN X D. Research on determination of freezing point of food materials[J]. Food Science,2011,32:126−131.

    SONG L R, CHEN S X, LIN X D. Research on determination of freezing point of food materials[J]. Food Science, 2011, 32: 126-131.
    [16] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.3-2016[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People’s Republic of China. National Food Safety Standard-Determination of moisture in food: GB 5009.3-2016[S]. Beijing: Standards Press of China, 2016.
    [17] NY/T 2637-2014水果和蔬菜可溶性固形物含量的测定 折射仪法[S]. NY/T 2637-2014.

    NY/T 2637-2014 Determination of soluble solids in fruits and vegetables-Refractometer method[S]. NY/T 2637-2014.
    [18] GB/T 20378-2006 原淀粉 淀粉含量的测定 旋光法[S]. GB/T 20378-2006.

    GB/T 20378-2006 Native starch-Determination of starch content-Ewers polarimetric method[S]. GB/T 20378-2006.
    [19] KIM H K, CHOI Y H, VERPOORTE R. NMR-based metabolomic analysis of plants[J]. Nature Protocols,2010,5(3):536−549. doi:  10.1038/nprot.2009.237
    [20] WANT E J, OMAILLE G, SMITH C A, et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry[J]. Analytical Chemistry,2006,78(3):743−752. doi:  10.1021/ac051312t
    [21] BAINY E M, CORAZZA M L, LENZIM K. Measurement of freezing point of tilapia fish burger using differential scanning calorimetry (DSC) and cooling curve method[J]. Journal of Food Engineering,2015,161:82−86. doi:  10.1016/j.jfoodeng.2015.04.001
    [22] 钟志友, 张敏, 杨乐, 等. 果蔬冰点与其生理生化指标关系的研究[J]. 食品工业科技,2011(2):76−78. [ZHONG Z Y, ZHANG M, YANG L, et al. Study on relation between freezing and physiological and biochemical indexes of fruit and vegetable[J]. Science and Technology of Food Industry,2011(2):76−78.

    ZHONG Z Y, ZHANG M, YANG L, et al. Study on relation between freezing and physiological and biochemical indexes of fruit and vegetable[J]. Science and Technology of Food Industry, 2011, 2: 76-78.
    [23] 江永, 李奇伟, 卢颖林, 等. 甘蔗蔗糖积累的规律、影响因素及其调控机制的研究进展[J]. 甘蔗糖业,2011(6):11−17. [JIANG Y, LI Q W, LU Y L, et al. Advances in the rules, influencing factor and regulatory mechanisms of sucrose accumulation in sugarcane[J]. Sugarcane and Canesugar,2011(6):11−17. doi:  10.3969/j.issn.1005-9695.2011.06.003

    JIANG Y, LI Q W, LU Y L, et al. Advances in the rules, influencing factor and regulatory mechanisms of sucrose accumulation in sugarcane[J]. Sugarcane and Canesugar, 2011, 6: 11-17. doi:  10.3969/j.issn.1005-9695.2011.06.003
    [24] 颜克伟, 徐景升, 祁建民. 甘蔗糖代谢及转录组学研究[C] //中国作物学会. 2012年中国作物学会学术年会论文摘要集. 北京: 中国农业科学技术出版社, 2012: 36.

    YAN K W, XU J S, QI J M. The metabolism and transcriptome studies of cane sugar[C]//The Crop Science Society of China. The Academic Conference Abstract Set of the Crop Science Society of China. Beijing: China’s Agricultural Science and Technology Press, 2012: 36.
    [25] BOULESTEI X A L, STRIMMER K. Partial least squares: A versatile tool for the analysis of high-dimensional genomic data[J]. Briefings in Bioinformatics,2007,8:32−44.
    [26] SVENJA H, KEVIN Q, CHARMION C Q, et al. Exploratory metabolomics profiling in the kainic acid rat model reveals depletion of 25-hydroxyvitamin D3 during epileptogenesis[J]. Scientific Reports,2016,6:1−14. doi:  10.1038/s41598-016-0001-8
    [27] DONGRAO G, JINKAI S, JIANGUO Z. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.)[J]. Biology Open,2016,5:829−836. doi:  10.1242/bio.017863
    [28] HASPEL J A, CHETTIMADA S, SHAIK R S, et al. Circadian rhythm reprogramming during lung inflammation[J]. Nature Communications,2014,5:1−34.
    [29] SREEKUMAR A, POISSON L M, RAJENDIRAN T M, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature,2009,457:910−914. doi:  10.1038/nature07762
    [30] CHRISTIAN J, VIOLAINE S, STEPHEN J J. The freezing and supercooling of garlic (Allium sativum L.) Congélation et surfusion d'ail (Allium sativum L.)[J]. International Journal of Refrigeration,2009,32(2):253−260. doi:  10.1016/j.ijrefrig.2008.05.012
    [31] 应月, 李宝国, 董梅, 等. 冰温技术在食品贮藏中的研究进展[J]. 制冷技术,2009,2:12−15. [YING Y, LI B G, DONG M, et al. Advances in ice-temperature technique for food storage[J]. Refrigeration Technology,2009,2:12−15.

    YING Y, LI B G, DONG M, et al. Advances in ice-temperature technique for food storage[J]. Refrigeration Technology, 2009, 2: 12-15.
    [32] 王二欢, 许永华, 张忠宝, 等. 恒定低温对不同品系关玉竹组织抗冷性的影响[J]. 中国中药杂志,2015,40(1):68−72. [WANG E H, XU Y H, ZHANG Z B, et al. Effects of constant low temperature on cold resistance of different strains Polygonatum odoratum[J]. China Journal of Chinese Materia Medica,2015,40(1):68−72.

    WANG E H, XU Y H, ZHANG Z B, et al. Effects of constant low temperature on cold resistance of different strains Polygonatum odoratum[J]. China Journal of Chinese Materia Medica, 2015, 40(1): 68-72.
    [33] KHAN M I, FATMA M, PER T S, et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants[J]. Front Plant Sci,2015,6:462.
    [34] MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid[J]. Front Plant Sci,2014,5:4.
    [35] WANG W L, WANG X, ZHANG J, et al. Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat[J]. Plant Growth Regulation,2020,90(1):109−121. doi:  10.1007/s10725-019-00553-8
    [36] CHUANFU A, MOU Z L. Salicylic acid and its function in plant immunity[J]. Journal of Integrative Plant Biology,2011,53(6):412−428. doi:  10.1111/j.1744-7909.2011.01043.x
    [37] CLÁUDIA J, MÓNICA M, PEDRO M, et al. Salicylic acid application modulates physiological and hormonal changes in Eucalyptus globulus under water deficit[J]. Environmental and Experimental Botany,2015,118:56−66. doi:  10.1016/j.envexpbot.2015.06.004
    [38] 王维领, 赵灿, 李国辉, 等. 水杨酸在植物抵御低温胁迫中的作用[J]. 植物生理学报,2020,56(12):2585−2594. [WANG W L, ZHAO C, LI G H, et al. Role of salicylic acid in plant response to cold stress[J]. Plant Physiology Journal,2020,56(12):2585−2594.

    WANG W L, ZHAO C, LI G H, et al. Role of salicylic acid in plant response to cold stress[J]. Plant Physiology Journal, 2020, 56(12): 2585-2594.
    [39] 张秋明, 郑玉生, 魏岳荣, 等. 柑桔多胺代谢及其对生长结果调控的研究[J]. 湖南农业大学学报,2000,4:271−273. [ZHANG Q M, ZHENG Y S, WEI Y R, et al. Studies on polyamine metabolism and its regulation of grown and fruit set in citrus[J]. Journal of Hunan Agricultural University (Natural Sciences),2000,4:271−273.

    ZHANG Q M, ZHENG Y S, WEI Y R, et al. Studies on polyamine metabolism and its regulation of grown and fruit set in citrus[J]. Journal of Hunan Agricultural University (Natural Sciences), 2000, 4: 271-273.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  11
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 网络出版日期:  2022-06-17
  • 刊出日期:  2022-08-03

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础