Optimization of the Fermentation Process of Industrialized Independent Fermentation Coagulated Fermented Milk by Response Surface Methodology
-
摘要: 工业化独立发酵凝固型发酵乳受发酵温度波动、发酵时长及发酵后剪切破坏等因素的影响,易出现成品乳清析出量过多和凝固状态不佳等现象,本研究通过单因素实验初步探究了发酵温度波动、发酵温度、发酵时长、发酵菌种配比及模拟工业化灌装后破坏对产品质构和风味的影响,在单因素实验的基础上,设计响应面法Box-Behnken组合试验,对发酵温度、发酵时长、发酵菌种配比工艺参数进行了优化。单因素实验结果显示:灌装后发酵2 h内剪切破坏影响不大,但超出时间后将严重影响产品质构和酸化速度,灌装后发酵温度波动将显著影响产品的酸化速度和不良率,这提示工业化发酵过程中应当尽量缩短灌装后段液态乳在常温环境中的暂存时间,由于机器故障导致的灌装延迟超过2 h的液态乳应直接发酵为成品再进行二次利用,不适宜再经管道剪切后进行灌装。响应面模型最优解的结果表明,在实际发酵温度42 ℃,发酵时长5.6 h,菌种配比1:1最佳工艺条件条件下制备的工业化独立发酵凝固型发酵乳的质构完好率为100%,终止发酵的酸度为68.56°T,冷库后放置12 h的酸度为70.2°T,发酵乳的综合感官评分为8.24分,与预测值接近,证明模型有效。流变学特性曲线结果显示该发酵乳的抗剪切能力较弱,200 s−1高剪切后的酸奶黏度恢复率仅为25.55%,符合脆软嫩滑形式的凝固型发酵乳的感官特点。响应面法可有效拟合该凝固型发酵乳的发酵温度、发酵时长、发酵菌种配比之间的关系,为工业化生产中不可避免的菌种配比称量误差、发酵温度堆热传热波动、人为取样时机导致的发酵时长误差等情况给予了一定的理论指导,方便在实际操作中,快速提出相应的对策。Abstract: Industrialized independent fermentation coagulated fermented milk is prone to the phenomenon of excessive whey precipitation and poor coagulation state of the finished product affected by factors such as fermentation temperature fluctuation, fermentation time and shear damage after fermentation. The effects of fermentation temperature fluctuation, fermentation temperature, fermentation time, fermentation strain ratio, and simulated industrial filling damage on product texture and flavor were studied. On the basis of single-factor experiments, a response surface methodology Box-Behnken combination experiment was designed. The process parameters of fermentation temperature, fermentation time and fermentation strain ratio were optimized. The single-factor experiment results showed that the shear damage had little effect within 2 hours of fermentation after filling, but it could seriously affect the product texture and acidification speed when the time exceeded, suggesting that in the industrial fermentation process, the temporary storage time of the liquid milk in the room temperature environment should be shortened as much as possible, and the liquid milk waiting for filling delayed over 2 hours due to machine failure should be directly fermented into finished products for secondary use. It wasn’t suitable for filling after cutting through the pipeline. The results of the optimal solution of the response surface model showed that the texture integrity rate of the industrialized independent fermented coagulated fermented milk prepared under the optimal technological conditions of the actual fermentation temperature of 42 ℃, the fermentation time of 5.6 h, and the bacterial species ratio of 1:1 was 100%, the acidity of terminating fermentation was 68.56°T, and the acidity of 12 h after cold storage was 70.2°T. The comprehensive sensory score of fermented milk was 8.24, which was close to the predicted value, proving the validity of the model. The results of the rheological characteristic curve showed that the fermented milk had weak shear resistance, and the yogurt viscosity recovery rate after 200 s−1 high shear was only 25.55%, which was in line with the sensory characteristics of the coagulated fermented milk in the form of crisp, soft and smooth. The response surface methodology can effectively fit the relationship among the fermentation temperature, fermentation time and fermentation strain ratio of the coagulated fermented milk. It provides certain theoretical guidance for the unavoidable error of strain proportioning and weighing, the fluctuation of fermentation temperature and heat transfer, and the error of fermentation time caused by artificial sampling opportunity in industrial production, which is convenient for putting forward corresponding countermeasures quickly in practical operation.
-
表 1 工业化独立发酵凝固型发酵乳的温度波动实验设计
Table 1. Experimental design of temperature fluctuation of industrialized independent fermentation coagulated fermented milk
组别 10 ℃ 25 ℃ 30 ℃ 42 ℃ 1 1 h 0 0 6 h 2 1 h 0 1 h 6 h 3 1 h 0 1 h 30→42 ℃(6 h)* 4 0 0 1 h 6 h 5 0 1 h 0 6 h 6 0 0 0 6 h 注:每个组别均是从左至右进行的温度波动模拟实验,*表示该温度波动过程为培养箱温度由30 ℃改设置为42 ℃的缓慢升温变化过程,非直接将产品放入已升温至42 ℃的环境中。 表 2 工业化独立发酵凝固型发酵乳发酵工艺的BBD因素水平设计
Table 2. BBD factor level design of industrialized independent fermentation coagulated fermented milk fermentation process
水平编码值 因素 A发酵温度(℃) B发酵时长(h) C菌种比例(DCU/DCU) −1 38 4.0 1:2 0 40 5.0 1:1 1 42 6.0 3:2 注:C菌种比例是指复配菌种型号1和型号2菌种的比例,DCU为丹尼斯克公司的菌活力标识单位。 表 3 凝固型发酵乳产品的感官评分标准
Table 3. Sensory scoring standard for coagulated fermented milk products
评价项目 计分权重wi 单一评价项目得分xi 1~4分 5~7分 8~10分 镜面光滑度 10% 不能接受 一般接受 非常接受 香气(自然浓郁程度) 5% 平淡 一般 浓郁 冷藏后搅拌破坏后的质构 15% 碎块较多 一般丝滑,存在些许碎块 非常丝滑 味道(按喜好程度打分) 20% 酸、涩等不良风味 一般接受 酸甜香感整体怡人 发酵过程状态(是否有明显分层或乳清析出等情况) 10% 严重析水,产品离壁 轻度不佳 无任何异常 冷藏后熟化状态(是否有明显分层或乳清析出等情况) 25% 严重析水,产品离壁 轻度不佳 无任何异常 粘稠度等触感(按喜好程度打分) 15% 糊口等不良感官 基本满意 非常满意 表 4 不同条件下制备的工业化独立发酵凝固型发酵乳的感官评分及不同摇晃次数发酵7 h的产品酸度
Table 4. Sensory scores of industrialized independent fermentation coagulated fermented milk prepared under different conditions and acidity of products fermented for 7 hours with different shaking times
评价项目 计分权重 不同发酵温度(℃) 42 ℃发酵条件不同摇晃次数 42 ℃不同菌种比例 42 ℃不同发酵时间(h) 43 40 37 0 1 2 3 4 1:0 1:1 0:1 4.5 5.5 6.5 镜面光滑度 10% 6 8 7 9 7* 6* 4** 4** 4 9 6 9 9 9 香气(自然浓郁程度) 5% 8 8 6 8 8 7 5** 5** 4 8 7 6 8 8 冷藏后搅拌破坏后的质构 15% 5 7 8 9 8 6* 5** 4** 4 9 6 7 9 9 味道(按喜好程度打分) 20% 5 8 7 8 8 7 6* 6* 4 8 7 7 8 7 发酵过程状态(是否有明显分层
或乳清析出等情况)10% 5 7 7 8 7 6* 5** 4** 4 8 7 8 8 8 冷藏后熟化状态(是否有明显分层
或乳清析出等情况)25% 7 8 7 9 8 7* 6** 5** 4 9 7 7 9 9 粘稠度等触感(按喜好程度打分) 15% 6 7 6 8 7 8 6* 6* 7 8 5 9 8 7 综合得分 100% 5.90 7.60 6.95 8.50 7.65* 6.80* 5.50** 5.00** 4.45 8.50 6.45 7.55 8.50 8.15 发酵7 h的酸度(°T) − − − − 68.02 65.61* 65.60* 64.85** 63.09** − − − − − − 注:表中“−”表示不关注其他发酵酸奶样品7 h的酸度且未检测;“*”和“**”标识分别表示42 ℃发酵条件摇晃次数≥1的组别分别与不摇晃的组别进行比较的差异显著性水平P<0.05和P<0.01。 表 5 发酵温度波动对产品不良率及酸化速度的影响
Table 5. The influence of fermentation temperature fluctuation on product defect rate and acidification speed
组别 终点酸度(°T) 终点pH 过夜发酵酸度(°T) 过夜发酵pH 产品不良率(%) 1 59.58±0.53* 4.38±0.02 80.34±0.65 4.00±0.01 57.14±7.14* 2 62.35±0.42 4.34±0.01 79.58±0.61* 4.03±0.01 66.67±8.33** 3 61.98±0.44* 4.37±0.01 81.38±0.67 4.02±0.01 71.43±14.29** 4 63.48±0.26 4.26±0.01 82.75±0.66 3.98±0.02 60.00±6.67** 5 64.05±0.22 4.30±0.01 83.82±0.71 3.98±0.02 75.00±5.00** 6 64.96±0.17 4.30±0.01 83.53±0.68 3.98±0.02 38.46±7.69 注:“*”和“**”标识分别表示第1~5组(有温度波动)相应数据分别与第6组(无温度波动)进行比较的差异显著性水平P<0.05和P<0.01。 表 6 基于Box-Behnken设计的不同因素水平组合下的凝固型发酵乳的综合感官得分
Table 6. Comprehensive sensory evaluation of coagulated fermented milk under different factor level combinations based on Box-Behnken design
实验号 A B C 综合感官得分 1 0 0 0 8.10 2 −1 −1 0 7.60 3 1 −1 0 7.90 4 −1 0 1 5.80 5 1 0 1 6.10 6 1 0 −1 7.00 7 0 0 0 7.90 8 0 0 0 7.95 9 0 1 1 6.05 10 1 1 0 8.10 11 0 0 0 7.95 12 0 −1 1 5.25 13 0 0 0 7.85 14 0 1 −1 6.70 15 −1 1 0 8.10 16 0 −1 −1 6.30 17 −1 0 −1 6.35 表 7 基于Box-Behnken设计的响应曲面二次模型的方差分析
Table 7. Analysis of variance for quadratic model of response surface based on Box-Behnken design
来源 平方和 自由度 均方和 F值 P值 模型 14.99 9 1.67 91.91 <0.0001** A-发酵温度 0.1953 1 0.1953 10.78 0.0134* B-发酵时长 0.4513 1 0.4513 24.90 0.0016** C-菌种比例 1.24 1 1.24 68.43 <0.0001** AB 0.0225 1 0.0225 1.24 0.3020 AC 0.0306 1 0.0306 1.69 0.2348 BC 0.0400 1 0.0400 2.21 0.1810 A2 0.0475 1 0.0475 2.62 0.1494 B2 0.0725 1 0.0725 4.00 0.0856 C2 12.80 1 12.80 706.36 <0.0001** 残差 0.1269 7 0.0181 失拟项 0.0919 3 0.0306 3.50 0.1288 净误差 0.0350 4 0.0088 总和 15.12 16 注:*差异显著(P<0.05);**差异极显著(P<0.01)。 -
[1] 张玉玉, 马建军, 苏文政, 等. 不同发酵剂对凝固型酸乳品质的影响[J]. 山东农业科学,2016,48(12):133−135. [ZHANG Yuyu, MA Jianjun, SU Wenzheng, et al. The effect of different starters on the quality of coagulated yogurt[J]. Shandong Agricultural Sciences,2016,48(12):133−135.ZHANG Yuyu, MA Jianjun, SU Wenzheng, et al. The effect of different starters on the quality of coagulated yogurt[J]. Shandong Agricultural Sciences, 2016, 48(12): 133-135. [2] 姜雨, 蒙六妹, 夏兵兵. 太妃糖味凝固型发酵乳的开发[J]. 食品与发酵科技,2019,55(6):50−54. [JIANG Yu, MENG Liumei, XIA Bingbing. Development of toffee-flavored coagulated fermented milk[J]. Food and Fermentation Technology,2019,55(6):50−54.JIANG Yu, MENG Liumei, XIA Bingbing. Development of toffee-flavored coagulated fermented milk[J]. Food and Fermentation Technology, 2019, 55(6): 50-54. [3] 贺小贤, 姚娇娇, 周欣, 等. 凝固型李子酸奶发酵条件优化[J]. 中国酿造,2019,38(10):5−10. [HE Xiaoxian, YAO Jiaojiao, ZHOU Xin, et al. Optimization of fermentation conditions for solidified plum yogurt[J]. China Brewing,2019,38(10):5−10.HE Xiaoxian, YAO Jiaojiao, ZHOU Xin, et al. Optimization of fermentation conditions for solidified plum yogurt[J]. China Brewing, 2019, 38(10): 5-10. [4] 王宇星, 王超, 严文莉, 等. 凝固型咖啡酸奶的研制[J]. 中国酿造,2020,39(10):205−209. [WANG Yuxing, WANG Chao, YAN Wenli, et al. Development of coagulated coffee yogurt[J]. China Brewing,2020,39(10):205−209. doi: 10.11882/j.issn.0254-5071.2020.10.038WANG Yuxing, WANG Chao, YAN Wenli, et al. Development of coagulated coffee yogurt[J]. China Brewing, 2020, 39(10): 205-209. doi: 10.11882/j.issn.0254-5071.2020.10.038 [5] 周洁, 罗冠仪, 刘振民. 凝固型芝士风味发酵乳的制备[J]. 中国酿造,2020,39(2):216−219. [ZHOU Jie, LUO Guanyi, LIU Zhenmin. Preparation of coagulated cheese flavored fermented milk[J]. China Brewing,2020,39(2):216−219. doi: 10.11882/j.issn.0254-5071.2020.02.040ZHOU Jie, LUO Guanyi, LIU Zhenmin. Preparation of coagulated cheese flavored fermented milk[J]. China Brewing, 2020, 39(2): 216-219. doi: 10.11882/j.issn.0254-5071.2020.02.040 [6] 代佳和, 赵存朝, 毕威, 等. 滇红茶凝固型发酵乳的研制及工艺的优化[J]. 中国酿造,2020,39(2):211−215. [DAI Jiahe, ZHAO Cunchao, BI Wei, et al. Development and process optimization of Yunnan black tea coagulated fermented milk[J]. China Brewing,2020,39(2):211−215. doi: 10.11882/j.issn.0254-5071.2020.02.039DAI Jiahe, ZHAO Cunchao, BI Wei, et al. . Development and process optimization of Yunnan black tea coagulated fermented milk[J]. China Brewing, 2020, 39(2): 211-215. doi: 10.11882/j.issn.0254-5071.2020.02.039 [7] 陈文璐, 刘妍妍, 巩燕妮. 响应面法优化干酪风味发酵乳的发酵工艺[J]. 食品工业科技,2021,42(23):235−242. [CHEN Wenlu, LIU Yanyan, GONG Yanni. Response surface methodology to optimize the fermentation process of cheese-flavored fermented milk[J]. Food Industry Science and Technology,2021,42(23):235−242.CHEN Wenlu, LIU Yanyan, GONG Yanni. Response surface methodology to optimize the fermentation process of cheese-flavored fermented milk[J]. Food Industry Science and Technology, 2021, 42(23): 235-242. [8] 蔡达, 刘燕, 伍国杰, 等. 组合赋权法结合响应面分析法优化娟姗牛奶Mozzarella干酪制作工艺[J]. 食品工业科技,2015,36(12):239−243. [CAI Da, LIU Yan, WU Guojie, et al. Combination weighting method combined with response surface analysis method to optimize the production process of Juan Shan milk Mozzarella cheese[J]. Food Industry Science and Technology,2015,36(12):239−243.CAI Da, LIU Yan, WU Guojie, et al. Combination weighting method combined with response surface analysis method to optimize the production process of Juan Shan milk Mozzarella cheese[J]. Food Industry Science and Technology, 2015, 36(12): 239-243. [9] 胡盼盼. 响应面法优化副干酪乳杆菌发酵沙棘酸奶工艺[J]. 中国酿造,2021,40(6):202−206. [HU Panpan. Optimization of Lactobacillus paracasei fermented sea-buckthorn yogurt process by response surface methodology[J]. China Brewing,2021,40(6):202−206. doi: 10.11882/j.issn.0254-5071.2021.06.039HU Panpan. Optimization of Lactobacillus paracasei fermented sea-buckthorn yogurt process by response surface methodology[J]. China Brewing, 2021, 40(6): 202-206. doi: 10.11882/j.issn.0254-5071.2021.06.039 [10] 孙敏, 李博, 梅俊. 低聚果糖对低脂凝固型发酵乳品质的影响研究[J]. 中国酿造,2021,40(3):84−89. [SUN Min, LI Bo, MEI Jun. The effect of fructooligosaccharides on the quality of low-fat coagulated fermented milk[J]. China Brewing,2021,40(3):84−89. doi: 10.11882/j.issn.0254-5071.2021.03.015SUN Min, LI Bo, MEI Jun. The effect of fructooligosaccharides on the quality of low-fat coagulated fermented milk[J]. China Brewing, 2021, 40(3): 84-89. doi: 10.11882/j.issn.0254-5071.2021.03.015 [11] 邱爽, 宋铮, 张璟琳, 等. 细菌素bifidocin A对凝固型发酵乳品质及贮藏性能的影响[J]. 中国食品学报,2020,20(9):156−165. [QIU Shuang, SONG Zheng, ZHANG Jinglin, et al. The effect of bacteriocin bifidocin A on the quality and storage performance of coagulated fermented milk[J]. Chinese Journal of Food Science,2020,20(9):156−165.QIU Shuang, SONG Zheng, ZHANG Jinglin, et al. The effect of bacteriocin bifidocin A on the quality and storage performance of coagulated fermented milk[J]. Chinese Journal of Food Science, 2020, 20(9): 156-165. [12] 吴倩, 余元善, 徐玉娟, 等. 不同乳酸菌对凝固型荔枝酸奶的发酵特性和质构的影响[J]. 现代食品科技,2019,35(7):99−106. [WU Qian, YU Yuanshan, XU Yujuan, et al. Effects of different lactic acid bacteria on the fermentation characteristics and texture of coagulated litchi yogurt[J]. Modern Food Science and Technology,2019,35(7):99−106.WU Qian, YU Yuanshan, XU Yujuan, et al. Effects of different lactic acid bacteria on the fermentation characteristics and texture of coagulated litchi yogurt[J]. Modern Food Science and Technology, 2019, 35(7): 99-106. [13] 薛依婷, 白红霞, 李明杰, 等. 黑木耳多糖凝固型酸奶发酵工艺优化[J]. 食品工业科技,2020,41(16):156−162. [XUE Yiting, BAI Hongxia, LI Mingjie, et al. Fermentation process optimization of black fungus polysaccharide coagulated yogurt[J]. Food Industry Science and Technology,2020,41(16):156−162.XUE Yiting, BAI Hongxia, LI Mingjie, et al. Fermentation process optimization of black fungus polysaccharide coagulated yogurt[J]. Food Industry Science and Technology, 2020, 41(16): 156-162. [14] 李梦怡. 二次凝固型酸奶的工艺及其影响因素的研究[D]. 长沙: 中南林业科技大学, 2017.LI Mengyi. Research on the technology of secondary solidification yogurt and its influencing factors[D]. Changsha: Central South University of Forestry and Technology, 2017. [15] 闫丹丽, 邹依婷, 李默, 等. 厌氧发酵对凝固型酸奶品质特性的影响[J]. 沈阳农业大学学报,2020,51(3):296−302. [YAN Danli, ZOU Yiting, LI Mo, et al. The effect of anaerobic fermentation on the quality characteristics of set yogurt[J]. Journal of Shenyang Agricultural University,2020,51(3):296−302.YAN Danli, ZOU Yiting, LI Mo, et al. The effect of anaerobic fermentation on the quality characteristics of set yogurt[J]. Journal of Shenyang Agricultural University, 2020, 51(3): 296-302. [16] 雷文平, 吴诗敏, 李彩虹, 等. 响应面法优化凝固型发酵椰奶工艺[J]. 中国酿造,2019,38(2):212−216. [LEI Wenping, WU Shimin, LI Caihong, et al. Optimization of coagulated fermentation coconut milk process by response surface methodology[J]. China Brewing,2019,38(2):212−216. doi: 10.11882/j.issn.0254-5071.2019.02.041LEI Wenping, WU Shimin, LI Caihong, et al. Optimization of coagulated fermentation coconut milk process by response surface methodology[J]. China Brewing, 2019, 38(2): 212-216. doi: 10.11882/j.issn.0254-5071.2019.02.041 [17] PURI R, KHAMRUI K, TOMAR S K, et al. Effect of ingredients and processing parameters on the texture and microstructure of acid-heatrncoagulated dairy dessert[J]. Journal of Food Processing and Preservation,2017,41(2):1−12. [18] BULDO P, SOKOLOWSKY M, HOEGHOLM T. The role of starter cultures on oral processing properties of different fermented milk products[J]. Food Hydrocolloids,2020,114(1):1−13. [19] MONIQUE C, TODOROV S D, CARVALHO A F, et al. Technological properties of beneficial bacteria from the dairy environment and development of a fermented milk with the beneficial strain Lactobacillus casei MRUV6[J]. The Journal of Dairy Research,2020,87(2):259−262. doi: 10.1017/S0022029920000308 [20] BUSANELLO M, FILHO M, GUERGOLETTO K B, et al. Optimization of the growth of Lactobacillus in skim milk added with green banana flour and determination functional properties[J]. Nutrition and Food Science,2019,49(2):249−261. doi: 10.1108/NFS-03-2018-0098 [21] GUERGOLETTO K B, MAURO C S, GARCIA S. Juçara (Euterpe edulis) pulp as a substrate for probiotic bacteria fermentation: optimisation process and antioxidant activity[J]. Emirates Journal of Food Agriculture,2017,12(1):949−959. [22] 黄娟, 黄燕燕, 刘冬梅, 等. 响应面法优化多汁乳菇多糖提取工艺及抗氧化活性研究[J]. 食品工业科技,2017,38(11):55−60. [HUANG Juan, HUANG Yanyan, LIU Dongmei, et al. Optimization of Lactarius volemus polysaccharide extraction process and antioxidant activity by response surface methodology[J]. Food Industry Science and Technology,2017,38(11):55−60.HUANG Juan, HUANG Yanyan, LIU Dongmei, et al. Optimization of Lactarius succulent polysaccharide extraction process and antioxidant activity by response surface methodology[J]. Food Industry Science and Technology, 2017, 38(11): 55-60. [23] FACCIA M, GAMBACORTA G, MARTEMUCCI G, et al. Chemical-sensory traits of fresh cheese made by enzymatic coagulation of donkey milk[J]. Foods,2020,9(1):1−13. [24] HUANG Yanyan , ZHAO Shan, YAO Kun, et al. Physicochemical, microbiological, rheological, and sensory properties of yoghurts with new polysaccharide extracts from Lactarius volemus Fr. using three probiotics[J]. International Journal of Dairy Technology,2020,73(1):168−181. doi: 10.1111/1471-0307.12653 [25] BAREEN M A, JOSHI S, SAHU J K, et al. Assessment of 3D printability of heat acid coagulated milk semi-solids 'soft cheese' by correlating rheological, microstructural, and textural properties[J]. Journal of Food Engineering,2021,300(1):110−118. [26] BIGASKI RIBEIRO J C, GRANATO D, MASSON M L, et al. Effect of lactobionic acid on the acidification, rheological properties and aroma release of dairy gels[J]. Food Chemistry,2016,207(2):101−106. [27] LUCEY J A. Formation, structural properties, and rheology of acid-coagulated milk gels[M]. Cheese (Fourth edition), 2017: 179−197. [28] LI Z, YANG Z, OTTER D, et al. Rheological and structural properties of coagulated milks reconstituted in D2O: Comparison between rennet and a tamarillo enzyme (tamarillin)[J]. Food Hydrocolloids,2018,79(1):170−178. [29] EVELIN K, LASZL V. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry[J]. Trends in Food Science & Technology,2021,110(1):375−384. [30] XU Z, GUO Q, ZHANG H, et al. Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation[J]. International Journal of Biological Macromolecules,2021,178(2):263−269. [31] HASSAN A N, IPSEN R, JANZEN T, et al. Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides[J]. Journal of Dairy Science,2003,86(5):1632−1638. doi: 10.3168/jds.S0022-0302(03)73748-5 [32] KARATAS S M, EKICI L, DEVELI I, et al. Effects of GSM 1800 band radiation on composition, structure and bioactivity of exopolysaccharides produced by yoghurt starter cultures[J]. Archives of Microbiology,2021,203(4):1697−1706. doi: 10.1007/s00203-020-02168-4 -