• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊

酶解联合高温处理对可可粉风味的影响

钱蕾 于海燕 娄新曼 田怀香

钱蕾,于海燕,娄新曼,等. 酶解联合高温处理对可可粉风味的影响[J]. 食品工业科技,2022,43(18):80−88. doi:  10.13386/j.issn1002-0306.2021120085
引用本文: 钱蕾,于海燕,娄新曼,等. 酶解联合高温处理对可可粉风味的影响[J]. 食品工业科技,2022,43(18):80−88. doi:  10.13386/j.issn1002-0306.2021120085
QIAN Lei, YU Haiyan, LOU Xinman, et al. Effect of Enzymatic Hydrolysis Combined with High Temperature Processing on the Flavor of Cocoa Powder[J]. Science and Technology of Food Industry, 2022, 43(18): 80−88. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120085
Citation: QIAN Lei, YU Haiyan, LOU Xinman, et al. Effect of Enzymatic Hydrolysis Combined with High Temperature Processing on the Flavor of Cocoa Powder[J]. Science and Technology of Food Industry, 2022, 43(18): 80−88. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120085

酶解联合高温处理对可可粉风味的影响

doi: 10.13386/j.issn1002-0306.2021120085
详细信息
    作者简介:

    钱蕾(1991−),女,硕士研究生,研究方向:天然提取和香原料开发,E-mail:lilyqian0919@126.com

    通讯作者:

    田怀香(1976−),女,博士,教授,研究方向:食品风味化学,E-mail:tianhx@sit.edu.cn

  • 中图分类号: TS274

Effect of Enzymatic Hydrolysis Combined with High Temperature Processing on the Flavor of Cocoa Powder

  • 摘要: 本文考察了酶解和高温联合处理对可可风味的作用。首先以游离氨基酸含量为评价指标,研究了5种蛋白酶对脱脂可可粉酶解液中游离氨基酸的影响,并进一步采用顶空-气相色谱-质谱联用(headspace gas chromatography mass spectrometry,HS-GC-MS)结合香气活力值(odor activity value,OAV)以及感官评价研究了高温(90~180 ℃)对可可挥发性物质的作用。结果表明,酶解处理提高了总氨基酸含量,为酶解前的1.4~5倍,且与未经酶处理的对照样(12种挥发物)相比,5种联合处理的样品分别检测出29(天冬氨酸酶)、31(酸性蛋白酶)、29(风味蛋白酶)、30(菠萝蛋白酶)、32(木瓜蛋白酶)种挥发物,挥发性物质种类明显增加。当反应温度达到150 ℃以上更有助于可可中具有坚果和奶油香气的杂环化合物的生成;由感官评价可得,经风味蛋白酶处理并在150 ℃反应2 h的可可风味最佳。基于OAV与感官评价的偏最小二乘(partial least squares,PLS)模型验证可得:酶解和高温处理使可可在保持原有巧克力香气的同时增加花果香和奶香风味,有助于提升可可整体香气品质。
  • 图  1  5种蛋白酶与可可粉酶解后氨基酸含量变化关系

    Figure  1.  Changes in the concentration of free amino acid from five enzymic hydrolysates

    图  2  不同反应温度的可可粉酶解液挥发物变化图

    Figure  2.  Changes of cocoa enzymic hydrolysates volatile compounds at different temperature

    图  3  不同反应温度对可可挥发物OAV的聚类树图

    Figure  3.  Tree graph of different temperature on the volatile OAV of cocoa

    图  4  可可联合处理反应物的感官评价

    Figure  4.  Sensory evaluation on enzymatic hydrolysis combined with high temperature of cocoa

    注:*表示存在显著性差异(P<0.05);**表示存在极显著性差异(P<0.01)。

    图  5  不同酶处理样品与感官属性的PLS图

    Figure  5.  Partial least squares regression of cocoa samples and sensory indicators

    表  1  不同酶的酶解条件

    Table  1.   Enzymatic hydrolysis conditions of different enzymes

    蛋白酶
    简写
    酶活度
    (kU·g−1
    酶解pH酶解温度
    (℃)
    酶添加量
    (kU·g−1
    天冬氨酸酶Asp1002.04010
    酸性蛋白酶Acid5003.54010
    风味蛋白酶Fla3006.45510
    菠萝蛋白酶Bro10006.45510
    木瓜蛋白酶Pap10006.45510
    下载: 导出CSV

    表  2  感官描述词和评分

    Table  2.   Sensory evaluation descriptions

    描述词感官描述参比物
    嗅觉
    巧克力(10分)巧克力的特殊香气α-异丁基苯乙醇溶液20 mg/L
    奶香(10分)新鲜牛乳的特征风味0.1 mg/kg δ-十二烷内酯
    焦糖(10分)一种带有甜香、焦苦的气味糠醇水溶液60 mg/L
    花香(10分)鲜花特有的复合香气、带有香甜感香叶醇水溶液1 mg/L
    果香(10分)熟透水果浓郁香气,甜香花香合感苹果
    坚果(10分)烤味、木质味、油味的混合2,6-二甲基吡嗪2 mg/L醇水溶液
    木香(10分)新切割的木材,树皮味10 mg/L α-蛇麻烯
    辛香(10分)五香八角的气味五香八角香料
    烟熏(10分)烟气熏制食品过程产生的一类特殊风味10 g/L香芹酚丙二醇溶液
    味觉
    甜(10分)如糖似蜜蔗糖质量浓度为5.0 g/500 mL)
    酸(10分)像醋的味道柠檬酸质量浓度为0.25 g/500 mL)
    涩(10分)舌头口腔表面收缩、收敛感1 g/L的单宁酸水溶液
    苦(10分)苦瓜、啤酒、咖啡等特有的味感氯化奎宁质量浓度为0.072 g/500 mL)
    油脂(10分)植物油、矿物油的气味植物调和油
    下载: 导出CSV

    表  3  可可联合处理反应物的挥发物HS-GC-MS分析

    Table  3.   Contents of volatile compounds from Cocoa combined reactants by HS-GC-MS

    化合物RI鉴别
    方式
    阈值香气描述对照样天冬氨酸酶酸性蛋白酶风味蛋白酶菠萝蛋白酶木瓜蛋白酶
    文献值计算值μg/g挥发物质量分数(μg/g)
    甲酸543538MS, RI0.046强烈的刺激性10.8±0.78b12.56±2.38b77.77±73.30a7.98±2.28b
    2,3-丁二酮600615MS, RI0.005稀释奶油6.67±0.40b13.07±0.97ab7.64±1.80b22.43±3.66a1.77±0.41b3.15±0.91b
    乙酸乙酯610626MS, RI5菠萝果香、白兰地2.77±0.55b158.91±7.75a3.43±0.70b
    异丁醇622634MS, RI3.3透发的酒样香气7.62±0.51b29.84±1.46a6.39±1.36b
    乙酸646644MS, RI10000强烈的酸305.41±21.42b2128.74±697.42a1948.8±77.17a1133.43±239.48a14.62±3.02b17.20±12.74b
    丙二酸675MS, RI0.22±0.080.26±0.13
    异戊醛655650MS, RI辛辣、苹果杏仁1.53±0.03b3.32±0.59b23.54±23.75a5.42±1.32b6.73±1.79b
    戊醛658660MS, RI0.012-0.1发酵面包、坚果1.36±0.24b0.49±0.11b14.71±4.32a
    2-甲基丁醛661661MS, RI10咖啡和可可32.67±12.71a2.12±0.50b2.44±1.20b
    2-戊酮686687MS, RI0.07酒和丙酮样透发0.36±0.10
    羟基丙酮688681MS, RI25.17±1.69b154.23±3.98a129.46±42.92a53.53±64.19b12.52±3.65b
    戊二酮696686MS, RI0.07-0.16.42±0.38b13.47±0.66a
    3-羟基-2-丁酮720705MS, RI10000奶油20.88±0.96a2.22±0.46b20.23±5.89a
    丁酸甲酯724714MS, RI0.001-0.043苹果和干酪0.22±0.06
    3-甲基丁醇726733MS, RI0.25-4.1威士忌特征的辛辣5.07±1.08a1.10±0.32b
    2-甲基丁醇733739MS, RI0.0017水果和酒精2.03±0.43a0.28±0.08b
    二甲基二硫醚761764MS, RI0.0012洋葱3.37±0.45b3.84±0.58b4.87±0.93b13.11±0.64a
    己醛799795MS, RI0.0228青草、苹果0.25±0.060.21±0.05
    羟基丁酮803796MS, RI咖啡、奶油、香甜17.99±0.38
    2,3-丁二醇803808MS, RI甜巧克力38.92±6.59b10.23±1.94b491.92±65.69a23.10±9.17b24.83±5.52b
    糠醛818828MS, RI0.28-8面包发酵、焦糖93.73±6.59b268.99±22.86ab250.12±61.51ab431.13±40.50a26.00±8.81b19.22±11.14b
    异戊酸834840MS, RI2.8腐臭的、奶酪8.14±5.16
    糠醇865863MS, RI1.0-2.0发酵、奶油、焦糖12.75±0.11b22.61±4.31a
    环戊烯二酮880880MS, RI2.75±0.47a1.85±0.35ab0.22±0.06b
    2-庚酮889884MS, RI160水果、辛香0.27±0.08
    2-乙酰基呋喃910902MS, RI10甜杏仁坚果、烟熏47.35±2.11ab42.21±14.13ab133.79±6.55a6.22±1.31b3.21±0.94b
    2,6-二甲基吡嗪916908MS, RI1.5坚果、可可、咖啡0.55±0.02b0.37±0.06b0.98 ±0.28a0.47 ±0.11b0.45 ±0.08b
    己酸甲酯936926MS, RI0.087菠萝2.86±0.05b1.34±0.27b16.82±10.64a0.32±0.09b0.28±0.07b
    甲基糠醇953940MS, RI焦糖3.21±0.07a1.63±0.31b
    5-甲基糠醛957954MS, RI6焦糖的香甜2.47±0.05b5.18±1.06a
    苯甲醛964969MS, RI0.33苦杏仁3.11±0.16b3.99±3.38b2.77±0.51b15.45±0.74a1.92±0.46b1.46±0.40b
    乙酸糠醇酯998991MS, RI50发酵奶油、焦糖2.95±0.55a1.09±0.22b
    2-乙基-6-甲基吡嗪997993MS, RI0.1可可、坚果、烤土豆0.18 ±0.19b0.19 ±0.19b0.46 ±0.15a0.47 ±0.04a0.28 ±0.28ab
    2-乙基-3-甲基吡嗪1003997MS, RI2玉米花、坚果0.24 ±0.040.24 ±0.020.16 ±0.07
    苯乙醛10451038MS, RI0.004强烈风信子花香2.87±0.03b4.42±2.92b12.28±2.49ab31.70±2.42a1.77±0.77b2.31±0.63b
    4-羟基-2,5-二甲基-
    3(2H)-呋喃酮
    10721069MS, RI0.06烤面包、焦糖2.35±0.07a2.58±0.52a0.40±0.10b
    庚酸10711081MS, RI10.4酸臭、汗臭、脂肪味2.67±0.04c124.22±34.65a44.77±10.73b41.70±2.04b7.85±1.68c7.16±2.10c
    2,3,5,6-四甲基吡嗪10871080MS, RI1坚果、可可、奶油1.80±1.08a0.47 ±0.17b0.14 ±0.10b0.21 ±0.20b
    庚酸乙酯11081096MS, RI菠萝0.38±0.07
    苯乙醇11211108MS, RI3.5玫瑰花香14.42±0.98a2.83±0.54c1.36±0.26c6.94±0.33b9.53±4.02b2.44±0.71c
    乙基环戊烯醇酮11401145MS, RI500焦糖、烟熏、咖啡2.70±0.05
    2,3-二氢-3,5二羟基-
    6-甲基-
    4(H)-吡喃-4-酮
    11541161MS, RI焦糖样甜香1.28±0.23b8.33±0.92a
    辛酸11861178MS, RI1-19果香18.63±1.53bc40.02±8.06b80.41±34.93a2.74±0.70c1.35±0.36c
    5-羟甲基糠醛12331224MS, RI黄油、焦糖8.97±2.69a1.64±0.33b
    癸酸13801374MS, RI2.2-102蜡、水果4.71±0.44b5.55±1.12b14.63±9.26a1.38±0.36bc0.40±0.10c
    月桂酸15621566MS, RI100000乳脂香8.22±6.32b13.93±2.71b388.66±246.19a23.99±0.18b9.44±2.42b
    肉豆蔻酸17611749MS, RI1015.16±9.60a0.26±0.06b0.58±0.16b
    咖啡因18401857MS, RI2962.03±39.31a1.04±0.27b0.79±0.22b
    注: - 未查到文献值或未检出。相关数据根据webbook.nist.gov和https://www.chemicalbook.com及文献报道[42- 43]查得。同行不同字母表示显著性差异,P < 0.05。
    下载: 导出CSV
  • [1] SEYFRIED C, GRANVOGL M. Characterization of the key aroma compounds in two commercial dark chocolates with high cocoa contents by means of the sensomics approach[J]. Journal of Agricultural and Food Chemistry,2019,67(20):5827−5837. doi:  10.1021/acs.jafc.8b06183
    [2] OEC. The observatory of economic complexity online data visualization [DB]. 2018.https://oec.world/en/profile/hs92/cocoa-powder?redirect=true.
    [3] 中华人民共和国海关总署. 2021年12月进出口商品类章总值表(美元值)[EB/OL](2022-01-18)[2022–01–22]. http://www.customs.gov.cn//customs/302249/zfxxgk/2799825/302274/302277/302276/4127446/index.html.
    [4] CUMMINGD N, MATEO J. Main objectives emphasized at first regional fisheries data and statistics working group [C]// FAO. Proceedings of the Food and Agriculture organization of the United Nations, Bridgetown, Barbados, FAO, 2018: 1−2.
    [5] WIAH E N, TWUMASI-ANKRAH S. Impact of climate change on cocoa yield in ghana using vector autoregressive model[J]. Ghana Journal of Technology,2017,1(2):32−39.
    [6] ACULEY P C, SNITKJAER P, OWUSU M, et al. Ghanaian cocoa bean fermentation characterized by spectroscopic and chromatographic methods and chemometrics[J]. Journal of Food Science,2010,75(6):300−307. doi:  10.1111/j.1750-3841.2010.01710.x
    [7] JANEK K, NIEWIENDA A, WÖSTEMEYER J, et al. The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors[J]. Food Chemistry,2016,211:320−328. doi:  10.1016/j.foodchem.2016.05.033
    [8] AFOAKWA E O, QUAO J, BUDU A S, et al. Effect of pulp preconditioning on acidification, proteolysis, sugars and free fatty acids concentration during fermentation of cocoa (Theobroma cacao) beans[J]. International Journal of Food Sciences and Nutrition,2011,62(7):755−764. doi:  10.3109/09637486.2011.581224
    [9] HINNEH M, SEMANHYIA E, VAN DE WALLE D, et al. Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans[J]. Food Research International,2018,111:607−620. doi:  10.1016/j.foodres.2018.05.064
    [10] HINNEH M, VAN W D, TZOMPA S D A, et al. Tuning the aroma profiles of FORASTERO cocoa liquors by varying pod storage and bean roasting temperature[J]. Food Research International,2019,125:108550. doi:  10.1016/j.foodres.2019.108550
    [11] MOULAY L, MANZANARES P, VALLÉS S, et al. Effect of enzyme treatments and drying temperatures on methylpyrazine content in cocoa (Theobroma Cacao L. ) powder extract[J]. Journal of Food Science,2006,71(9):621−625. doi:  10.1111/j.1750-3841.2006.00181.x
    [12] VOIGT J, JANEK K, TEXTORIS-TAUBE K, et al. Partial purification and characterisation of the peptide precursors of the cocoa-specific aroma components[J]. Food Chemistry,2016,192:706−713. doi:  10.1016/j.foodchem.2015.07.068
    [13] D'SOUZA R N, GRIMB A, GRIMB S, et al. Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans[J]. Food Research International,2018,109:506−516. doi:  10.1016/j.foodres.2018.04.068
    [14] BERGER R G. From fermentation to white biotechnology: How microbial catalysts generate flavours [M]. Modifying Flavour in Food. Berger; Woodhead Publishing Limited. 2013: 64−94.
    [15] 康超, 杨玉霞, 刘俐俐, 等. 响应面法优化百香果的酶解工艺[J]. 食品工业科技,2017,38(21):157−161. [KANG C, YANG Y X, LIU L L, et al. Optimization of enzymolysis technology of passifloraceae by response surface methodology[J]. Science and Technology of Food Industry,2017,38(21):157−161. doi:  10.13386/j.issn1002-0306.2017.21.032

    KANG C, YANG Y X, LIU L L, et al. Optimization of enzymolysis technology of passifloraceae by response surface methodology[J]. Science and Technology of Food Industry, 2017, 38(21): 157-161]. doi:  10.13386/j.issn1002-0306.2017.21.032
    [16] TIAN H X, SHI Y H, ZHANG Y, et al. Screening of aroma‐producing lactic acid bacteria and their application in improving the aromatic profile of yogurt[J]. Journal of Food BioChemistry,2019,43(10):e12837. doi:  10.1111/jfbc.12837
    [17] 李明, 王培义, 田怀香. 香料香精应用基础[M]. 北京: 中国纺织出版社, 2010: 197, 199−203

    LI M, WANG P Y, TIAN H X, Fundamental and application of fragrance and flavor[M]. Beijing: China Textile Publisher, 2010: 197, 199−203.
    [18] 刘长姣, 杨越越, 王妮, 等. 茚三酮比色法测定秋葵中氨基酸含量条件的优化[J]. 中国食品添加剂,2018(1):187−193. [LIU C J, YANG Y Y, WANG N, et al. Optimization of detection conditions of amino acids in Okra by ninhydrin colorimetric method[J]. China Food Additive,2018(1):187−193. doi:  10.3969/j.issn.1006-2513.2018.01.020

    LIU C J, YANG Y Y, WANG N, et al. Optimization of detection conditions of amino acids in Okra by ninhydrin colorimetric method[J]. China Food Additive, 2018, (01): 187-193]. doi:  10.3969/j.issn.1006-2513.2018.01.020
    [19] 孙文佳, 王雪梅, 李亚隆, 等. 外源添加氨基酸对郫县豆瓣模拟体系感官及特征风味的影响[J]. 食品科学,2021,42(22):283−290. [SUN W J, WANG X M, LI Y L, et al. Effects of exogenous amino acid addition on Pixian broad-bean paste simulation system[J]. Food Science,2021,42(22):283−290. doi:  10.7506/spkx1002-6630-20200802-025

    SUN W J, WANG X M, LI Y L, et al. Effects of exogenous amino acid addition on Pixian broad-bean paste simulation system [J]. Food Science, 2021, 42(22): 283-290. doi:  10.7506/spkx1002-6630-20200802-025
    [20] 赵镭, 邓少平, 刘文. 食品感官分析词典[M]. 北京: 中国轻工业出版社, 2015

    ZHAO L, DENG S P, LIU W. Food sensory analysis vocabulary[M]. Beijing: China light industry publisher, 2015.
    [21] END , M J, DAND R. Cocoa beans: Chocolate and cocoa industry quality requirements [M]. CAOBISCO/ECA/FCC, September 2015: 11−18.
    [22] SAPAM S, MANDAL N, SINHA B. Latin square designs with neighbor effects-part II[J]. Communications in Statistics-Theory and Methods,2021,50(14):3371−3379. doi:  10.1080/03610926.2019.1702694
    [23] 朱宏, 王爱莉, 仇菊, 等. 动态顶空结合气质联用法测定山西老陈醋发酵过程中挥发性物质的变化[J]. 中国食品学报,2016,16(1):264−271. [ZHU H, WANG A L, QIU J, et al. Changes of aroma compounds in Shanxi aged vinegar during its fermentation determined by dynamic headspace-gas chromatography[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(1):264−271. doi:  10.16429/j.1009-7848.2016.01.035

    ZHU H, WANG A L, QIU J, et al. Changes of aroma compounds in Shanxi aged vinegar during its fermentation determined by dynamic headspace-gas chromatography[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(01): 264-271]DOI: 10.16429/j.1009-7848.2016.01.035.
    [24] MOHAMADI ALASTI F, ASEFI N, MALEKI R, et al. Investigating the flavor compounds in the cocoa powder production process[J]. Food Science & Nutrition,2019,7(12):3892−3901. doi:  10.1002/fsn3.1244
    [25] 王姣, 王绒雪, 张晋华等. 乳扇加工工艺优化及其风味成分分析[J]. 食品与发酵工业,2019,45(23):189−198. [WANG J, WANG R X, ZHANG J H, et al. Optimization of Rushan processing technology and analysis of flavor components[J]. Food and Fermentation Industries,2019,45(23):189−198. doi:  10.13995/j.cnki.11-1802/ts.021676

    WANG J, WANG R X, ZHANG J H, et al. Optimization of Rushan processing technology and analysis of flavor components [J]. Food and Fermentation Industries, 2019, 45(23): 189-198]DOI: 10.13995/j.cnki.11-1802/ts.021676
    [26] 段春红. 7S、11S酶解产物的特性及其在肉肠中的应用研究[D]. 武汉: 华中农业大学, 2009

    DUAN C H, Study on properties of 7S and 11S modified by enzyme and application in pork sausage[D]. Wuhan: Huazhong Agricultural University, 2009
    [27] CABALLERO B T L, FINGLAS P. Encyclopedia of food sciences and nutrition [M]. 2nd ed. USA: Academic Press, 2005: 1436-1448
    [28] ROHSIUS C, REINHARD M, LIEBEREI R. Free amino acid amounts in raw cocoas from different origins[J]. European Food Research and Technology,2006,222:432−438. doi:  10.1007/s00217-005-0130-y
    [29] KADOW D, NIEMENAK N, ROHN S, et al. Fermentation-like incubation of cocoa seeds (Theobroma cacao L. ) – Reconstruction and guidance of the fermentation process[J]. LWT - Food Science and Technology,2015,62(1):357−361. doi:  10.1016/j.lwt.2015.01.015
    [30] MARSEGLIA A, MUSCI M, RINALDI M, et al. Volatile fingerprint of unroasted and roasted cocoa beans (Theobroma cacao L.) from different geographical origins[J]. Food Research International,2020,132:109101. doi:  10.1016/j.foodres.2020.109101
    [31] RAMLI N, HASSAN O, SAID M, et al. Influence of roasting condition on volatile flavour of roasted Malaysian cocoa beans[J]. Journal of Food Processing and Preservation,2006,30:280−98. doi:  10.1111/j.1745-4549.2006.00065.x
    [32] 胡梓妍, 刘伟, 何双, 等. 基于HS-SPME-GC-MS法分析3种金橘的香气挥发性成分[J]. 食品科学,2021,42(16):176−184. [HU Z Y, LIU W, HE S, et al. Analysis of volatile components in three kinds of Kumquat by HS-SPME-GC-MS[J]. Food Science,2021,42(16):176−184. doi:  10.7506/spkx1002-6630-20200821-290

    HU Z Y, LIU W, HE S, et al. Analysis of volatile components in three kinds of Kumquat by HS-SPME-GC-MS [J]. Food Science, 2021, 42(16): 176-184]. doi:  10.7506/spkx1002-6630-20200821-290
    [33] ZHANG W C, TANG J M. Tracing the production area of citrus fruits using aroma‐active compounds and their quality evaluation models[J]. Journal of the Science of Food and Agriculture,2020,100(2):517−526. doi:  10.1002/jsfa.10026
    [34] 王丹, 况丹妮, 刘若阳, 等. 焦糖化与美拉德反应中DDMP、HMF及糠醛的生成研究 [J/OL]. 食品工业科技: 1-13[2022-01-25] [WANG D, KUANG D N, LIU R Y, et al. Study on the formation of DDMP, HMF and furfural in caramelization and Maillard reaction[J/OL]. Science and Technology of Food Industry: 1−13 [2022-01-25]

    WANG D, KUANG D N, LIU R Y, et al. Study on the formation of DDMP, HMF and furfural in caramelization and Maillard reaction[J/OL]. Science and Technology of Food Industry: 1−13[2022-01-25]DOI: 10.13386/jissn1002-0306.2021090221.
    [35] AFOAKWA E O, PATERSON A, FOWLER M, et al. Matrix effects on flavour volatiles release in dark chocolates[J]. Food Chemistry,2009,113(01):208−215. doi:  10.1016/j.foodchem.2008.07.088
    [36] AFOAKWA E O, QUAO J, TAKRAMA F, et al. Changes in total polyphenols, o-diphenols and anthocyanin concentrations during fermentation of pulp pre-conditioned cocoa (Theobroma cacao) beans[J]. International Food Research Journal,2012,19(3):1071−1077.
    [37] RAMOS C L, DIAS D R, MIGUEL M G D C P, et al. Impact of different cocoa hybrids (Theobroma cacao L. ) and S. cerevisiae UFLA CA11 inoculation on microbial communities and volatile compounds of cocoa fermentation[J]. Food research international,2014,64:908−918. doi:  10.1016/j.foodres.2014.08.033
    [38] FEBRIANTO N A, ZHU F. Changes in the composition of methylxanthines, polyphenols, and volatiles and sensory profiles of cocoa beans from the Sul 1 genotype affected by fermentation[J]. Journal of Agricultural and Food Chemistry,2020,68(32):8658−8675. doi:  10.1021/acs.jafc.0c02909
    [39] MIRALLES G J. Chemical composition and flavour development of cocoa products by thermal and enzymatic technologies [J]. University of Salford, 2008.
    [40] YAYLAYAN V A, HAFFENDEN L J. Mechanism of imidazole and oxazole formation in [13C-2]-labelled glycine and alanine model systems[J]. Food Chemistry,2003,81(3):403−409. doi:  10.1016/S0308-8146(02)00470-3
    [41] SMIT G, SMIT B A, ENGELS W J. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products[J]. FEMS Microbiology Reviews,2005,29(3):591−610. doi:  10.1016/j.fmrre.2005.04.002
    [42] GEMERT L J V. Odour_thresholds [M]. 2nd ed. The Netherlands: Oliemans Punter & Partners BV, 2011.
    [43] BURDOCK G A. Fenaroli’s handbook of flavor ingredients [M]. 6th ed. Boca Raton: CRC Press, 2016.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 网络出版日期:  2022-08-05

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》青年编委专栏征稿 | 杂粮与主粮复配的营养学基础