Quantitative Analysis of Three Amines in Thermally Processed Meat Products Using QuEChERS Combined with UHPLC-MS/MS
-
摘要: 肉制品加热中产生的胺类物质对人体健康存在危害,检测方法不够简便。本文采用QuEChERS技术结合超高效液相色谱-串联质谱(UHPLC-MS/MS)技术建立同时检测丙烯酰胺(AA)、亚硝胺(NAs)和杂环胺(HAAs)含量的方法,用于分析热加工肉制品中产生的胺类物质。结果表明:该方法检测出的三类成分20种胺类物质在相应浓度范围内显示出良好的线性(R2>0.991),检测限和定量限分别为0.01~1.6 ng/g和0.03~4.8 ng/g,日内回收率介于66.3%~116.5%之间,日内精密度介于0.78%~9.0%之间。每个胺类物的5×LOQ加标水平计算的日间精度范围为3.4%~9.4%。该方法应用于煎烤的四种肉制品中AA、NAs和HAAs的分析,共检测出9种胺类物质,浓度范围为0.08~31.26 ng/g。Abstract: The amines produced in heating meat products are harmful to human health, but the current detection method is not simple enough. In this study, QuEChERS technology combined with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to establish a method for the simultaneous detection of acrylamide (AA), nitrosamines (NAs) and heterocyclic amines (HAAs) in processed meat products. The results showed that the analytic methods of 20 amines in the three components showed good linearity (R2>0.991) in the corresponding concentration range, and the detection limit and quantification limit were 0.01~1.6 ng/g and 0.03~4.8 ng/g, respectively. The average daily recovery rate was between 66.3%~111.5%, and the intraday precision was between 0.78%~9.0%. The daily accuracy range of the 5×LOQ spiked level calculation for each amine was 3.4%~9.4%. The method was applied to the analysis of AA, NAs and HAAs in four meat products for grilling, in them 9 amines were detected with the concentration range of 0.08~31.26 ng/g.
-
Key words:
- acrylamide /
- heterocyclic amines /
- nitrosamines /
- thermally processed meat products
-
图 2 流动相为1 mmol/L乙酸铵0.06%甲酸条件下20种胺类物质混合标准溶液色谱图
Figure 2. Chromatogram of a mixed standard solution of 20 amines with the mobile phase 1 mmol/L ammonium acetate and 0.06% formic acid
(1.AA;2.NPYR;3;DMIP;4.IQ;5.MeIQ;6.IQx;7.MeIQx;8. 4,8-DiMeIQx,7,8-DiMeIQx;9. Norharman;10.4,7,8-DiMeIQx;11.Harman;12.NPIP;13.PHIP;14. TRP-P-1,TRP-P-2;15.AaC;16.NDPA;17.NDBA;18.NDPHA)
表 1 AA、NAs、HAAs的质谱条件
Table 1. MS conditions of AA, NAs and HAAs
化合物 保留时间(min) 锥孔电压(V) MRM离子对(m/z) 碰撞电压(V) AA 0.84 35 72.13/55.27*
72.13/43.9310
10DMIP 2.34 48 162.96/148.05*
162.96/105.20322
32IQx 3.02 58 199.98/185.08*
199.98/131.1226
38IQ 2.51 56 198.90/184.07
198.90/130.0028
40MeIQ 2.86 52 212.97/198.01*
212.97/116.8724
50MeIQx 3.38 54 213.97/130.97*
213.97/199.0238
267,8-DiMeIQx 3.65 60 228.00/213.06*
228.00/131.0326
384,8-DiMeIQx 3.65 54 227.94/212.94*
227.94/144.8322
38Norharman 3.76 60 168.95/141.99*
168.95/89.0126
42Harman 3.93 58 182.90/114.97*
182.90/167.9432
26TRP-P-2 4.13 56 197.97/127.59*
197.97/77.0928
48PHIP 4.15 58 224.97/210.03*
224.97/114.7128
48TRP-P-1 4.28 56 211.98/179.19*
211.98/115.0438
44AaC 4.42 46 183.91/157.003*
183.91/88.9520
46NPYR 2.22 4 100.85/55.12*
100.85/40.0025
15NDPA 5.77 24 130.97/89.08*
130.97/42.858
13NDPHA 7.12 28 199.09/169.10*
199.09/74.1010
12NDBA 6.98 28 158.97/102.99*
158.97/56.9510
13NMOR 1.72 30 117/45*
117/8718
18NPIP 4.07 30 115/41*
115/6916
124,7,8-TriMeIQx 3.87 54 241.87/145.01 40 Norharman-d7 3.73 62 176.03/120.37 30 注:*为定量离子。 表 2 20种目标化合物的标准曲线、定量限、检测线和基质效应
Table 2. Standard curves, quantification limits, detection lines and matrix effects of 20 target compounds
化合物 线性范围(ng/mL) 校准曲线 R2 LOD(ug/kg) LOQ(ug/kg) ME AA 1~100 y=174.061x+74.1202 0.997 0.75 2.25 0.93 DMIP 0.1~100 y=0.0102x+0.017 0.998 0.1 0.3 0.67 IQx 0.1~100 y=0.009x+0.0064 0.999 0.06 0.18 0.83 IQ 0.1~100 y=0.0069x+0.0172 0.994 0.06 0.18 0.41 MeIQ 0.1~100 y=0.0157x+0.0093 0.991 0.1 0.3 1.17 MeIQx 0.1~100 y=0.0105x+0.0048 0.998 0.02 0.06 1.17 7,8-DiMeIQx 0.1~100 y=0.032x−0.0093 0.996 0.01 0.03 1.09 4,8-DiMeIQx 0.1~100 y=0.0231x−0.0006 0.997 0.02 0.06 0.97 Norharman 0.1~100 y=0.0467x−0.0185 0.999 0.06 0.18 1.15 Harman 0.1~100 y=0.9079x−0.9526 0.998 0.02 0.06 1.17 TRP-P-2 1~100 y=0.0059x−0.0548 0.995 0.75 2.25 0.47 PhIP 0.1~100 y=0.4951x−0.4404 0.994 0.01 0.03 1.15 TRP-P-1 0.1~100 y=0.0448x−0.07 0.997 0.01 0.03 1.23 AaC 0.5~100 y=0.0127x+0.0015 0.996 0.4 1.2 0.95 NPYR 2~100 y=565.381x−62.9893 0.995 1.5 4.5 0.63 NDPA 1~100 y=272.29x−6.82813 0.997 0.8 2.4 0.80 NDPHA 0.1~100 y=187.967x+280.38 0.999 0.06 0.18 0.79 NDBA 0.1~100 y=666.164x+440.269 0.997 0.01 0.03 0.80 NMOR 2~100 y=41.4562x−23.3852 0.996 1.6 4.8 1.01 NPIP 0.5~100 y=436.673x−552.953 0.998 0.5 1.5 1.10 表 3 20种胺类物质的加标回收率
Table 3. Standard recovery rates of 20 amines
化合物 本底量
(ng/g)添加量
(ng/g)回收率% 1×LOQ 5×LOQ 10×LOQ AA 3 3.0、15.0、30.0 89.4±3.7 96.4±6.4 97.8±7.8 DMIP ND 0.3、1.5、3.0 89.1±4.9 92.3±4.3 94.4±5.5 IQx ND 0.2、1.0、2.0 86.2±5.8 84.2±6.4 90.5±7.2 IQ ND 0.2、1.0、2.0 71.2±2.9 83.1±5.9 77.8±4.5 MeIQ ND 0.3、1.5、3.0 111.5±9.2 103.5±7.3 115.2±7.0 MeIQx ND 0.1、0.5、1.0 87.2±6.7 82.7±5.7 81.5±4.8 7,8-DiMeIQx ND 0.1、0.5、1.0 90.4±3.0 92.5±3.9 83.7±4.4 4,8-DiMeIQx ND 0.1、0.5、1.0 96.6±4.5 99.1±6.8 95.1±5.9 Norharman 1.7 0.2、1.0、2.0 116.5±3.6 104.3±4.0 104.6±6.1 Harman 1.4 0.1、0.5、1.0 88.0±4.6 82.9±5.3 90.0±3.8 TRP-P-2 ND 3.0、15.0、30.0 66.3±2.9 71.4±3.4 72.9±4.1 PHIP ND 0.1、0.5、1.0 96.3±5.8 110.3±6.7 109.3±8.5 TRP-P-1 ND 0.1、0.5、1.0 97.1±3.5 105.1±8.4 100.8±2.1 AaC ND 1.0、5.0、10.0 98.5±9.5 90.2±8.3 107.3±8.8 NPYR ND 5.0、25.0、50.0 81.2±5.2 77.8±6.4 74.7±5.7 NDPA ND 3.0、15.0、30.0 109.4±7.6 96.4±6.4 97.9±7.8 NDPHA ND 0.2、1.0、2.0 85.7±7.1 97.7±4.7 96.3±5.9 NDBA ND 0.1、0.5、1.0 81.7±4.3 82.7±8.2 88.5±5.1 NMOR ND 5.0、25.0、50.0 86.4±4.7 80.1±5.6 77.3±3.6 NPIP ND 2.0、10.0、20.0 86.3±3.1 92.3±7.0 86.3±5.5 注:ND表示未检出。 表 4 20种胺类物质的精密度
Table 4. Precisions of 20 amines
化合物 本底量
(ng/g)日间精密度
(%)日内精密度(%,n=5) 1×LOQ 5×LOQ 10×LOQ AA 3 4.3±2.5 6.1±2.1 5.8±0.4 6.5±1.1 DMIP ND 6.9±2.6 5.7±0.8 3.3±1.1 7.8±1.3 IQx ND 8.0±2.4 5.1±0.8 5.5±1.3 7.7±1.5 IQ ND 8.9±1.8 7.3±1.6 7.2±3.0 3.1±0.7 MeIQ ND 7.0±2.1 5.9±1.7 7.8±1.3 6.4±2.6 MeIQx ND 5.2±2.1 4.8±2.5 5.9±1.1 7.1±1.3 7,8-DiMeIQx ND 5.4±2.3 5.4±1.6 2.9±1.2 4.0±0.7 4,8-DiMeIQx ND 3.4±0.2 5.1±1.5 5.2±1.5 5.5±1.6 Norharman 1.7 7.1±3.1 5.2±1.1 7.8±3.5 5.9±2.5 Harman 1.4 7.9±1.1 4.5±1.1 0.78±0.4 6.2±1.2 TRP-P-2 ND 5.8±2.9 6.6±1.3 6.2±1.9 8.1±1.6 PHIP ND 7.0±2.4 6.7±2.2 5.3±1.6 5.3±1.3 TRP-P-1 ND 8.5±2.4 8.2±3.3 4.1±0.8 3.9±1.6 AaC ND 6.9±3.1 8.3±3.2 6.9±2.8 6.8±1.4 NPYR ND 6.6±1.8 8.8±1.4 7.8±3.3 3.9±0.6 NDPA ND 8.7±2.0 4.1±1.1 3.8±0.7 5.3±1.2 NDPHA ND 9.4±2.6 5.3±1.5 7.2±2.9 3.8±0.8 NDBA ND 5.4±2.3 9.0±2.1 4.3±1.5 6.6±1.6 NMOR ND 6.1±1.9 6.9±1.5 6.9±2.3 8.1±1.5 NPIP ND 8.1±1.7 6.2±1.1 5.1±1.5 5.7±1.4 注:ND表示未检出。 表 5 煎烤3、5、7 min四种肉品中胺类物质的含量
Table 5. Amines contents in four types of meat products at grilling for 3, 5, and 7 minutes
有害物种类 加工时间(min) 肉制品胺类物质含量(ng/g) 牛肉 鸡肉 猪肉 羊肉 NDPHA 3 9.06±0.01a 2.53±0.41b − 1.29±0.10c 5 11.47±0.76a 5.53±1.46b − 1.09±0.13c 7 11.83±0.25a 6.56±0.11b − 1.28±0.34c 4,8-DiMeIQx 3 0.07±0.01d 0.26±0.04a 0.2±0.01b 0.13±0.02c 5 0.29±0.04b 0.28±0.04b 0.58±0.22a 0.11±0.01c 7 0.22±0.07c 0.40±0.02b 1.44±0.24a 0.22±0.08c 7,8-DiMeIQx 3 0.03±0.02c 0.17±0.05a 0.13±0.06b 0.16±0.05a 5 0.22±0.11c 0.25±0.10b 0.99±0.07a 0.12±0.06d 7 0.46±0.19b 0.30±0.12d 1.76±0.08a 0.41±0.05c PHIP 3 − 0.08±0.02a 0.06±0.02b − 5 − 0.14±0.03b 0.68±0.36a − 7 − 0.14±0.02b 1.89±0.39a 0.14±0.02b Norharman 3 15.48±2.68a 6.68±0.40b 6.48±1.00c 5.37±0.44d 5 17.8±6.89a 5.45±0.23d 7.59±2.95c 9.07±0.68b 7 22.69±2.02a 7.69±0.84d 8.75±1.24c 15.18±3.96b Harman 3 3.21±0.19a 1.69±0.06c 1.53±0.20d 2.16±0.02b 5 3.28±1.44b 1.79±0.07d 3.19±1.20c 9.74±0.11a 7 4.53±0.33b 2.07±0.09d 3.12±0.21c 10.22±0.31a NDBA 3 0.08±0.02c 0.13±0.01b 0.15±0.02a 0.09±0.01c 5 0.13±0.01d 0.15±0.07c 0.17±0.02b 0.19±0.06a 7 0.16±0.03c 0.23±0.02b 0.23±0.03b 0.25±0.05a NPIP 3 18.41±3.06a 8.24±0.78b 6.45±0.78c 4.96±0.95d 5 28.89±1.57a 13.03±0.10b 11.95±0.49c 6.89±1.02d 7 31.26±1.79a 14.27±1.01b 13.45±1.59c 7.78±1.15d AA 3 11.90±3.29b 5.61±3.75d 8.37±0.77c 12.58±2.94a 5 19.20±6.42a 18.58±3.81b 14.64±2.09c 10.38±0.77d 7 28.31±2.96a 18.83±3.27b 22.60±1.74c 18.20±4.08d 注:−表示未检出;同行数据间不同字母表示差异显著(P<0.05)。 -
[1] LUND M N, RAY C A. Control of Maillard reactions in foods: strategies and chemical mechanisms[J]. Journal of Agricultural and Food Chemistry,2017,65(23):4537−4552. doi: 10.1021/acs.jafc.7b00882 [2] OZ F, KABAN G, KAYA M. Effects of cooking methods and levels on formation of heterocyclic aromatic amines in chicken and fish with oasis extraction method[J]. LWT-Food Science and Technology,2010,43(9):1345−1350. doi: 10.1016/j.lwt.2010.04.014 [3] 杨旭卉, 黄运安, 关天琪, 等. 红肉及其加工制品的营养价值及癌症风险控制的研究进展[J]. 现代食品,2021(8):33−37. [YANG X H, HUANG Y A, GUAN T Q, et al. Research progress on nutritional value and cancer risk control of red meat and its processed products[J]. Modern Food,2021(8):33−37. doi: 10.16736/j.cnki.cn41-1434/ts.2021.08.011YANG X H, HUANG Y A, GUAN T Q, et al. Research progress on nutritional value and cancer risk control of red meat and its processed products[J]. Modern Food, 2021(8): 33-37. doi: 10.16736/j.cnki.cn41-1434/ts.2021.08.011 [4] 杨光, 李博, 李岳桦. QuEChERS-气相色谱-串联质谱法测定香肠和火腿肠制品中13种N-亚硝胺化合物[J]. 食品安全质量检测学报,2019,10(24):8436−8443. [YANG G, LI B, LI Y H. Determination of 13 N-nitrosamines in sausage and ham products by QuEChERS-gas chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2019,10(24):8436−8443. doi: 10.19812/j.cnki.jfsq11-5956/ts.2019.24.041YANG G, LI B, LI Y H. Determination of 13 N-nitrosamines in sausage and ham products by QuEChERS-gas chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality, 2019, 10(24): 8436-8443. doi: 10.19812/j.cnki.jfsq11-5956/ts.2019.24.041 [5] DUDA-CHODAK A, TARKO T, SROKA P, et al. A review of the interactions between acrylamide, microorganisms and food components[J]. Food Function,2016,3:1282−1295. [6] BIESALSKI H K. Meat as a component of a healthy diet-are there any risks or benefits if meat is avoided in the diet[J]. Meat Science,2005,70(3):509−524. doi: 10.1016/j.meatsci.2004.07.017 [7] OZ F, KABAN G, KAYA M. Effects of cooking methods on the formation of heterocyclic aromatic amines of two different species of trout[J]. Food Chemistry,2007,10:67−72. [8] MAAN A A, ANJUM M A, KASHIF M, et al. Acrylamide formation and different mitigation strategies during food processing-A review[J]. Food Reviews International,2022,38:78−80. [9] MOLLAKHALILI-MEYBODI N, KHORSHIDIAN N, NEMATOLLAHI A, et al. Acrylamide in bread: A review on formation, health risk assessment, and determination by analytical techniques[J]. Environmental Science and Pollution Research,2021,28(13):15627−15645. doi: 10.1007/s11356-021-12775-3 [10] QIN L, ZHANG Y Y, XU X B, et al. Isotope dilution HPLC-MS/MS for simultaneous quantification of acrylamideand 5-hydroxymethylfurfural (HMF) in thermally processed seafood[J]. Food Chemistry,2017,232:633−638. doi: 10.1016/j.foodchem.2017.04.069 [11] JAMALI M A, ZHANG Y W, TENG H, et al. Inhibitory effectof Rosa rugosa tea extract on the formation of heterocyclic amines in meat patties at different temperatures[J]. Molecules,2016,21:173−187. doi: 10.3390/molecules21020173 [12] SUN S Y, YUN F, YONG M X. A facile detection of acrylamide in starchy food by using a solid extraction-GC strategy[J]. Food Control,2012,26(2):220−222. doi: 10.1016/j.foodcont.2012.01.028 [13] ZOKAEI M, ABEDI A, KAMANKESH M, et al. Ultrasonic-assisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples[J]. Food Chemistry,2017,234:55−61. doi: 10.1016/j.foodchem.2017.04.141 [14] AEENEHVAND S, TOUDEHROUSTA Z, KAMANKESH M. Evaluation and application of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of polar heterocyclic aromatic amines in hamburger patties[J]. Food Chemistry,2016,190:429−435. doi: 10.1016/j.foodchem.2015.05.103 [15] AMAYREH M, CHANBASHA B, ALHOOSHANI K, et al. Determination of N-nitrosamines by automated dispersive liquid-liquid microextraction integrated with gas chromatography and mass spectrometry[J]. Journal of Separation Science,2015,38(10):1741−1748. doi: 10.1002/jssc.201401043 [16] IAMMARINO M, MICHELE M, CHIARAVALLE A E. Anion exchange polymeric sorbent coupled to high‐performance liquid chromatography with UV diode array detection for the determination of ten N ‐nitrosamines in meat products: A validated approach[J]. International Journal of Food Science and Technology,2019,55(3):1097−1109. [17] BORTOLOMEAZZI R, ANESE M, VERARDO G, et al. Rapid mixed mode solid phase extraction method for the determination of acrylamide in roasted coffee by HPLC-MS/MS[J]. Food Chemistry,2012,135(4):2687−2693. doi: 10.1016/j.foodchem.2012.07.057 [18] NI W, MCNAUGHTON L, LEMASTER D M, et al. Quantitation of 13 heterocyclic aromatic amines in cooked beef, pork, and chicken by liquid chromatography-electrospray ionization/tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2008,56(1):68−78. doi: 10.1021/jf072461a [19] DONG H, XIAN Y, XIAO K. , et al. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysisof 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS[J]. Food Chemistry,2019,274:471−479. doi: 10.1016/j.foodchem.2018.09.035 [20] 张甜. 肉制品中N-亚硝胺检测的前处理方法及色谱条件优化[D]. 晋中: 山西农业大学, 2017.ZHANG T. Pretreatment method and optimization of chromatographic conditions for the detection of N-nitrosamines in meat products[D]. Jinzhong: Shanxi Agricultural University, 2017. [21] AKYÜZ M. , ATA S, DINÇ E. A chemometric optimization of method for determination of nitrosamines in gastric juices by GC-MS[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,117:26−36. doi: 10.1016/j.jpba.2015.08.021 [22] 侯慧文. 不同烤制程度下羊肉中杂环胺生成规律的研究[D]. 锦州: 渤海大学, 2021.HOU W H. Study on the formation law of heterocyclic amines in mutton under different roasting degrees[D]. Jinzhou: Bohai University, 2021. [23] ALAM S, AHMAD R, PRANAW K, et al. Asparaginase conjugated magnetic nanoparticles used for reducing acrylamide formation in food model system[J]. Bioresource Technology,2018,269:121−126. doi: 10.1016/j.biortech.2018.08.095 [24] DOURADO C, PINTO C A, CUNHA S C, et al. A novel strategy of acrylamide mitigation in fried potatoes using asparaginase and high pressure technology[J]. Innovative Food Science and Emerging Technologies,2020,60:102310. doi: 10.1016/j.ifset.2020.102310 [25] ZUO S, ZHANG T, JIANG B. et al. Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries process[J]. Extremophiles,2015,19(4):841−851. doi: 10.1007/s00792-015-0763-0 [26] 李潇潇. 肉制品中丙烯酰胺形成规律的研究[D]. 天津: 天津科技大学, 2016.LI X X. Study on formation regularity of acrylamide in meat products[D]. Tianjin: Tianjin University of Science and Technology, 2016. [27] DONG H, ZENG X F, BAI W D. Solid phase extraction with high polarity Carb/PSA as composite fillers prior to UPLC-MS/MS to determine six bisphenols and alkylphenols in trace level hotpot seasoning[J]. Food Chemistry,2018,258:206−213. doi: 10.1016/j.foodchem.2018.03.074 [28] FLORES M, MORA L, REIG M, et al. Risk assessment of chemical substances of safety concern generated in processed meats[J]. Food Science and Human Wellness,2019,8(3):244−251. doi: 10.1016/j.fshw.2019.07.003 [29] 朱清清. 腊肉加工过程中亚硝胺生成规律及其控制研究[D]. 天津: 天津科技大学, 2015.ZHU Q Q. Research on the formation law and control of nitrosamines in the processing of bacon[D]. Tianjin: Tianjin University of Science and Technology, 2015. [30] HASKARACA G, DEMIROK SONCU E, KOLSARICI N, et al. Heterocyclic aromatic amines content in chicken burgers and chicken nuggets sold in fast food restaurants and effects of green tea extract and microwave thawing on their formation[J]. Journal of Food Processing and Preservation,2017,41(6):e13240. doi: 10.1111/jfpp.13240 [31] GU Y S, KIM I S. AHN J K. Mutagenic and carcinogenic heterocyclic amines as affected by muscle types/skin and cooking in pan roasted mackerel[J]. Mutatation Research,2020,515(1−2):189−195. -