• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

均质压力对亚麻籽油体乳液稳定性及体外消化的影响

葛耀进 黎雨浩 彭盛峰 刘伟

葛耀进,黎雨浩,彭盛峰,等. 均质压力对亚麻籽油体乳液稳定性及体外消化的影响[J]. 食品工业科技,2023,44(3):84−94. doi:  10.13386/j.issn1002-0306.2022040202
引用本文: 葛耀进,黎雨浩,彭盛峰,等. 均质压力对亚麻籽油体乳液稳定性及体外消化的影响[J]. 食品工业科技,2023,44(3):84−94. doi:  10.13386/j.issn1002-0306.2022040202
GE Yaojin, LI Yuhao, PENG Shengfeng, et al. Effect of Homogenization Pressure on the Stability and in Vitro Digestion of Flaxseed Oil Emulsion[J]. Science and Technology of Food Industry, 2023, 44(3): 84−94. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022040202
Citation: GE Yaojin, LI Yuhao, PENG Shengfeng, et al. Effect of Homogenization Pressure on the Stability and in Vitro Digestion of Flaxseed Oil Emulsion[J]. Science and Technology of Food Industry, 2023, 44(3): 84−94. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022040202

均质压力对亚麻籽油体乳液稳定性及体外消化的影响

doi: 10.13386/j.issn1002-0306.2022040202
详细信息
    作者简介:

    葛耀进(1998−),男,硕士研究生,研究方向:食品(含生物质)资源开发与利用,E-mail:ge15770570564@163.com

    通讯作者:

    彭盛峰(1992−),男,博士,助理研究员,研究方向:食品(含生物质)资源开发与利用,E-mail:pengsf@ncu.edu.cn

  • 中图分类号: TS222+1

Effect of Homogenization Pressure on the Stability and in Vitro Digestion of Flaxseed Oil Emulsion

  • 摘要: 本实验以亚麻籽油体为研究对象,通过对其进行均质处理,得到了稳定的富含α-亚麻酸的亚麻籽油体乳液,为居民在日常膳食中提高 -3不饱和脂肪酸摄入量提供了新的途径。在保持均质时间相同的条件下(3 min),对亚麻籽油体进行不同均质压力(40、80、120 MPa)与均质次数(1~3次)处理,考察均质处理对亚麻籽油体乳液的性质、环境稳定性(pH、离子强度、热、氧化稳定性)、储藏稳定性和消化特性的影响。结果表明,FOB在120 MPa下均质处理3次,电位绝对值增加,粒径显著减小(P<0.05)。均质处理后的亚麻籽油体乳液在50~90 ℃下热处理30 min,粒径、电位稳定,且表现出更好的氧化稳定性和储藏稳定性(P<0.05)。均质处理亚麻籽油体并不影响其对pH4~5和离子强度不稳定(P>0.05)。消化结果表明,均质处理后的亚麻籽油体乳液具有更快的脂肪酸释放速率(FFA)。综上,均质处理显著了减小亚麻籽油体乳液的粒径,增强了亚麻籽油体的储藏稳定性和氧化稳定性,且加快了脂肪酸释放速率。
  • 图  1  不同均质压力下处理三次亚麻籽油体的粒径分布图

    Figure  1.  Droplet size distributions of flaxseed oil body under different homogenizati on pressure with three times

    图  2  不同 pH 条件下亚麻籽油体的外观图

    Figure  2.  Appearance of flaxseed oil body at different pH

    图  3  不同 pH 下亚麻籽油体的粒径(A)和电位(B)

    Figure  3.  Particle size variation (A) and zeta potential variation (B) of flaxseed oil body at different pH

    注:图中不同字母表示数据之间具有显著性差异(P<0.05),图5图7图11同。

    图  4  不同离子强度条件下亚麻籽油体的外观图

    Figure  4.  Appearance of flaxseed oil body at different ions strengths

    注:图中0、50、100、200、400为氯化钠离子强度,单位:mmol/L。

    图  5  不同离子强度下亚麻籽油体的粒径(A)和电位(B)

    Figure  5.  Particle size variation (A) and zeta potential variation (B) of flaxseed oil body at different ions strengths

    图  6  不同温度处理后亚麻籽油体的外观图

    Figure  6.  Appearance of flaxseed oil body at different heating temperature

    图  7  不同温度处理后亚麻籽油体的粒径变化(A)和电位变化(B)

    Figure  7.  Particle size variation (A) and zeta potential variation (B) of flaxseed oil body at different heating temperature

    图  8  不同均质压力处理亚麻籽油体的POV值(A)和TBARs值(B)

    Figure  8.  POV (A) and TBARs (B) of flaxseed oil body under different homogenization pressure

    图  9  储藏期间亚麻籽油体乳液的外观变化

    Figure  9.  Change in appearance during storage of flaxseed oil body

    注:图中40、80、120为均质压力,单位:MPa。

    图  10  亚麻籽油体消化产物的共聚焦显微镜图

    Figure  10.  Confocal fluorescence microscopy images of flaxseed oil body

    图  11  亚麻籽油体在模拟消化胃肠道消化模型的粒径(A)和电位(B)

    Figure  11.  The particle diameter (A) and zeta potential (B) of flaxseed oil body under exposure to the simulated gastrointestinal tract model

    图  12  模拟小肠消化中NaOH滴定曲线(A)和FFA释放曲线(B)

    Figure  12.  NaOH titration curve (A) and FFA release curve (B) in simulated small intestine digestion

    表  1  不同均质压力及不同均质次数处理下亚麻籽油体的粒径和电位

    Table  1.   Particle size, zeta potential of flaxseed oil body under different homogenization pressure and different homogenization times

    样品D3.2(μm)D4.3(μm)ξ-电位(mV)
    未处理2.04±0.0115a3.93±0.2888a−26.47±0.80a
    40 MPa处理一次0.85±0.0010c1.08±0.0058b−32.67±1.62bc
    40 MPa处理二次0.73±0.0010e0.80±0.0010de−32.73±1.36bc
    40 MPa处理三次0.69±0.0060g0.75±0.0010def−34.60±1.91cd
    80 MPa处理一次0.87±0.0010b1.15±0.0100b−31.93±0.50bc
    80 MPa处理二次0.72±0.0010f0.88±0.0006cd−31.57±0.86bc
    80 MPa处理三次0.64±0.0010h0.69±0.0010ef−37.16±0.11d
    120 MPa处理一次0.77±0.0006d0.99±0.0006bc−30.33±0.12b
    120 MPa处理二次0.61±0.0006i0.65±0.0006ef−29.97±0.75b
    120 MPa处理三次0.58±0.0006j0.62±0.0006ef−36.33±0.75d
    注:D3.2:体积表面平均粒径;D4.3:体积平均粒径;同列不同字母表示数据之间具有显著性差异(P<0.05),表2同。
    下载: 导出CSV

    表  2  亚麻籽油体储藏期间的乳析指数

    Table  2.   Creaming index of flaxseed oil body during storage

    储藏天数(d)未处理的CI(%)40 MPa的CI(%)80 MPa的CI(%)120 MPa的CI(%)
    10e0c0c0c
    72.7±0.25d0c0c0c
    147±0.25c0c0c0c
    2810±0.15b2.3±0.05b1.6±0.15b2.4±0.1b
    4210±0.15b(析油)2.4±0.3b2.6±0.15b2.4±0.1b
    5615±0.15a(析油)7.2±0.1a7.3±0.1a7. 3±0.2a
    下载: 导出CSV
  • [1] 韩亚男, 潘士钢, 李海英, 等. 不同产地紫苏籽含油率及α-亚麻酸含量比较[J]. 食品安全导刊,2020(18):102. [HAN Y N, PAN S K, LI H Y, et, al. Comparison of oil content andα-linolenic acid content in perilla seeds from different habitats[J]. China Food Safety Magazine,2020(18):102.
    [2] 沙爽, 冯启鑫, 张欣蕊, 等. 亚油酸/α-亚麻酸复合物对小鼠急性肝损伤的预防作用(英文)[J]. 食品科学,2022,18:1−18. [SHA S, FENG Q X, ZHANG X R, et, al. Preventive effect of linoleic acid/α-linolenic acid complex on acute liver injury in mice[J]. Food Science,2022,18:1−18. doi:  10.7506/spkx1002-6630-20210716-191
    [3] 柏薇薇. α-亚麻酸及其分布[J]. 食品界,2017(12):82. [PAI W W. α-Linolenic acid and its distribution[J]. Food Industry,2017(12):82.
    [4] 刘静, 胡经纬, 周裔彬. 植物油体的提取及其乳化体系研究进展[J]. 食品工业科技,2021,42(12):422−429. [LIU J, HU J W, ZOU Y B. Advances in the extraction and emulsification system of oil bodies: A review[J]. Science and Technology of Food Industry,2021,42(12):422−429.
    [5] 徐泽健, 章绍兵. 植物油体制备工艺及其稳定性研究进展[J]. 中国油脂,2016,41(9):41−45. [XU Z J, ZHANG S B. Advance in preparation process and stability of plant oil body[J]. China Oils and Fats,2016,41(9):41−45.
    [6] 李婷婷 李志远, 孙静, 等. 牡丹油体提取及其稳定性研究[J]. 中国粮油学报,2019,34(8):98−103. [LI T T, LI Z Y, SUN J, et al. Study on extraction and stability of peony oil[J]. Journal of the Chinese Cereals and Oils,2019,34(8):98−103. doi:  10.3969/j.issn.1003-0174.2019.08.017
    [7] ZAABOUL F, ZHAO Q, XU Y, et al. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects[J]. Food Hydrocolloids,2022,124:107296. doi:  10.1016/j.foodhyd.2021.107296
    [8] LAN X, QIANG W, YANG Y, et al. Physicochemical stability of safflower oil body emulsions during food processing[J]. Lwt,2020,132:109838. doi:  10.1016/j.lwt.2020.109838
    [9] LOPEZ C, NOVALES B, RABESONA H, et al. Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability [J]. Food Res Int, 2021, 150(Pt A): 110759.
    [10] LIZARRAGA M S, PAN L G, AñON M C, et al. Stability of concentrated emulsions measured by optical and rheological methods. Effect of processing conditions—I. Whey protein concentrate[J]. Food Hydrocolloids,2008,22(5):868−878. doi:  10.1016/j.foodhyd.2007.04.012
    [11] WANG Q L, LI CUI C, JIANG L Z, et al. Oil bodies extracted from high-fat and low-fat soybeans: stability and composition during storage[J]. J Food Sci,2017,82(6):1319−1325. doi:  10.1111/1750-3841.13715
    [12] 王智丰 雷帆, 武艺, 等. 芝麻油体的稳定性及油体膜蛋白结构分析[J]. 食品科技,2019,44(8):190−196. [WANG Z F, LEI F, WU Y, et al. Stability of sesame oil bodies and structure analysis of oil body proteins[J]. Food Science and Technology,2019,44(8):190−196.
    [13] 刘竞男 徐晔晔, 王一贺, 等. 高压均质对大豆分离蛋白乳液流变学特性及氧化稳定性的影响[J]. 食品科学,2020,41(1):80−85. [LIU J N, XU Y Y, WANG Y H, et al. Effect of high pressure homogenization on rheological properties and oxidation stability of soy protein isolate-stabilized emulsion[J]. Food Science,2020,41(1):80−85.
    [14] DE CHIRICO S, DI BARI V, FOSTER T, et al. Enhancing the recovery of oilseed rape seed oil bodies (oleosomes) using bicarbonate-based soaking and grinding media[J]. Food Chemistry,2018,241(15):419−426.
    [15] ZHENG B, ZHANG X, LIN H, et al. Loading natural emulsions with nutraceuticals using the pH-driven method: Formation & stability of curcumin-loaded soybean oil bodies[J]. Food & Function,2019,10(9):5473−5484.
    [16] ZHU Y Q, CHEN X, MCCLEMENTS D J, et al. Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content[J]. Journal of Dispersion Science and Technology,2017,39(6):826−835.
    [17] SHANTHA N C, DECKER E A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids[J]. Journal of Aoac International,2020,77(2):421−424.
    [18] LI R, DAI T, TAN Y, et al. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions[J]. Food Chem,2020,310:125828. doi:  10.1016/j.foodchem.2019.125828
    [19] ZOU L, ZHENG B, ZHANG R, et al. Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles[J]. Food Research International,2016,81(Mara):74−82.
    [20] MUNOZ O, FUENTEALBA C, AMPUERO D, et al. The effect of Lactobacillus acidophilus and Lactobacillus casei on the in vitro bioaccessibility of flaxseed lignans (Linum usitatissimum L.)[J]. Food Funct,2018,9(4):2426−2432. doi:  10.1039/C8FO00390D
    [21] MCCLEMENTS D J. Principles of ultrasonic droplet size determination in emulsions[J]. Langmuir,1996,12(14):3454−3461. doi:  10.1021/la960083q
    [22] 康波. 花生油体乳液稳定性及乳液凝胶的研究[D]. 广州: 华南理工大学, 2010

    KANG B, Rerearch on the stability of peanut oil body emulsions and the emulsion gels[D]. Guangzhou: South China University of Technology, 2010
    [23] YAN B, PARK S H, BALASUBRAMANIAM V. Influence of high pressure homogenization with and without lecithin on particle size and physicochemical properties of whey protein-based emulsions[J]. Journal of Food Process Engineering,2017,40(6):e12578. doi:  10.1111/jfpe.12578
    [24] TANG C H, LIU F. Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism[J]. Food Hydrocolloids,2013,30(1):61−72. doi:  10.1016/j.foodhyd.2012.05.008
    [25] DING Z, JIANG Y, LIU X. Chapter 12 - nanoemulsions-based drug delivery for brain tumors[M]//KESHARWANI P, GUPTA U. Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Academic Press. 2018: 327−358.
    [26] KRSTIĆ M, MEDAREVIĆ Đ, ĐURIŠ J, et al. Chapter 12-Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs [M]//GRUMEZESCU A M. Lipid Nanocarriers for Drug Targeting. William Andrew Publishing. 2018: 473−508.
    [27] CHA Y, SHI X, WU F, et al. Improving the stability of oil-in-water emulsions by using mussel myofibrillar proteins and lecithin as emulsifiers and high-pressure homogenization[J]. Journal of Food Engineering,2019,258(OCTa):1−8.
    [28] SUBIRADE M, LOUPIL F, ALLAIN A F, et al. Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by fourier transform infrared spectroscopy[J]. International Dairy Journal,1998,8(2):135−140. doi:  10.1016/S0958-6946(98)00034-X
    [29] MCCLEMENTS D J. Protein-stabilized emulsions[J]. Current Opinion in Colloid & Interface Science,2004,9(5):305−313.
    [30] NEUMANN S M, VAN DER SCHAAF U S, KARBSTEIN H P. Investigations on the relationship between interfacial and single droplet experiments to describe instability mechanisms in double emulsions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,553:464−471. doi:  10.1016/j.colsurfa.2018.05.087
    [31] TZEN J T, CAO Y, LAURENT P, et al. Lipids, proteins, and structure of seed oil bodies from diverse species[J]. Plant physiology,1993,101(1):267−276. doi:  10.1104/pp.101.1.267
    [32] 齐家兴 廖芮莹, 李红丽, 等. 大豆油体蛋白基因家族的生物信息学分析[J]. 吉林农业大学学报,2021,43(1):51−58. [QI J X, LI H L, WANG S, et, al. Bioinformatics analysis of glycine max oleosin in soybean[J]. Journal of Jilin Agricultural University,2021,43(1):51−58. doi:  10.13327/j.jjlau.2021.4374
    [33] DONG X, ZHAO M, YANG B, et al. Effect of high-pressure homogenization on the functional property of peanut protein[J]. Journal of Food Process Engineering,2011,34(6):2191−2204. doi:  10.1111/j.1745-4530.2009.00546.x
    [34] LIU H H, KUO M I. Ultra high pressure homogenization effect on the proteins in soy flour[J]. Food Hydrocolloids,2016,52:741−748. doi:  10.1016/j.foodhyd.2015.08.018
    [35] YUAN B, REN J, ZHAO M, et al. Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate[J]. LWT-Food Science and Technology,2012,46(2):453−459. doi:  10.1016/j.lwt.2011.12.001
    [36] 张小影 齐宝坤, 孙禹凡, 等. 盐离子对大豆-乳清混合蛋白液的稳定性及界面特性的影响[J]. 食品工业科技,2021,42(6):22−28. [ZHANG X Y, QI B K, SUN Y F, et al. Effect of salt ion on the stability and interfacial adsorption characteristics of soybean-whey mixed protein emulsion[J]. Science and Technology of Food Industry,2021,42(6):22−28.
    [37] WANG S N , ZHAO H K, QU D N , et al. Destruction of hydrogen bonding and electrostatic interaction in soy hull polysaccharide: Effect on emulsion stability[J]. Food Hydrocolloids,2022:107304.
    [38] HOU J, FENG X, JIANG M, et al. Effect of NaCl on oxidative stability and protein properties of oil bodies from different oil crops[J]. LWT,2019,113:108263. doi:  10.1016/j.lwt.2019.108263
    [39] ZHOU L Z, CHEN F S, HAO L H, et al. Peanut oil body composition and stability[J]. Journal of Food Science,2019,84(10):2812−2819. doi:  10.1111/1750-3841.14801
    [40] HUANG A H C. Oil bodies and oleosins in seeds[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1992,43(1):177−200. doi:  10.1146/annurev.pp.43.060192.001141
    [41] DELEU M, VACA-MEDINA G, FABRE J F, et al. Interfacial properties of oleosins and phospholipids from rapeseed for the stability of oil bodies in aqueous medium[J]. Colloids and Surfaces B: Biointerfaces,2010,80(2):125−132. doi:  10.1016/j.colsurfb.2010.05.036
    [42] IWANAGA D, GRAY D A, FISK I D, et al. Extraction and characterization of oil bodies from soy beans: A natural source of pre-emulsified soybean oil[J]. Journal of agricultural and food chemistry,2007,55(21):8711−8716. doi:  10.1021/jf071008w
    [43] DING J, WEN J, WANG J, et al. The physicochemical properties and gastrointestinal fate of oleosomes from non-heated and heated soymilk[J]. Food Hydrocolloids,2020,100:105418. doi:  10.1016/j.foodhyd.2019.105418
    [44] CHEN B, MCCLEMENTS D J, GRAY D A, et al. Physical and oxidative stability of pre-emulsified oil bodies extracted from soybeans[J]. Food Chem,2012,132(3):1514−1520. doi:  10.1016/j.foodchem.2011.11.144
    [45] TONON R V, GROSSO C R F, HUBINGER M D. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying[J]. Food Research International,2011,44(1):282−9. doi:  10.1016/j.foodres.2010.10.018
    [46] FISK I D, WHITE D A, LAD M, et al. Oxidative stability of sunflower oil bodies[J]. European Journal of Lipid Science and Technology,2008,110(10):962−968. doi:  10.1002/ejlt.200800051
    [47] WANG Q, JIANG J, XIONG Y L. High pressure homogenization combined with pH shift treatment: A process to produce physically and oxidatively stable hemp milk[J]. Food Res Int,2018,106:487−494. doi:  10.1016/j.foodres.2018.01.021
    [48] NAKAYA K , USHIO H , MATSUKAWA S, et al. Effects of droplet size on the oxidative stability of oil-in-water emulsions[J]. Lipids,2005,40(5):501. doi:  10.1007/s11745-005-1410-4
    [49] CHANAMAI R, MCCLEMENTS D J. Impact of weighting agents and sucrose on gravitational separation of beverage emulsions[J]. Journal of Agricultural and Food Chemistry,2000,48(11):5561−5565. doi:  10.1021/jf0002903
    [50] LIANG H N, TANG C H. pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins[J]. Food Hydrocolloids,2013,33(2):309−319. doi:  10.1016/j.foodhyd.2013.04.005
    [51] ZHENG B, ZHANG X, PENG S, et al. Impact of curcumin delivery system format on bioaccessibility: Nanocrystals, nanoemulsion droplets, and natural oil bodies[J]. Food Funct,2019,10(7):4339−4349. doi:  10.1039/C8FO02510J
    [52] ZOU L, ZHENG B, ZHANG R, et al. Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: Comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions[J]. RSC Advances,2016,6(4):3126−3136. doi:  10.1039/C5RA22834D
    [53] LIANG L, ZHANG X, WANG X, et al. Influence of dairy emulsifier type and lipid droplet size on gastrointestinal fate of model emulsions:In vitro digestion study[J]. J Agric Food Chem,2018,66(37):9761−9769. doi:  10.1021/acs.jafc.8b02959
    [54] SINGH H, YE A, HORNE D. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion[J]. Prog Lipid Res,2009,48(2):92−100. doi:  10.1016/j.plipres.2008.12.001
    [55] LI Y, HU M, MCCLEMENTS D J. Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method[J]. Food Chemistry,2011,126(2):498−505. doi:  10.1016/j.foodchem.2010.11.027
    [56] CORSTENS M N, BERTON-CARABIN C C, DE VRIES R, et al. Food-grade micro-encapsulation systems that may induce satiety via delayed lipolysis: A review[J]. Crit Rev Food Sci Nutr,2017,57(10):2218−2244. doi:  10.1080/10408398.2015.1057634
    [57] BRAY G A P B M. Dietary fat intake does affect obesity![J]. The American Fournal of Clinical Nutrition,1998,68(6):1157−1173. doi:  10.1093/ajcn/68.6.1157
    [58] AARAK K E, KIRKHUS B, HOLM H, et al. Release of EPA and DHA from salmon oil-a comparison of in vitro digestion with human and porcine gastrointestinal enzymes[J]. Br J Nutr,2013,110(8):1402−1410. doi:  10.1017/S0007114513000664
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》入选《食品科学与工程领域高质量科技期刊分级目录》第一方阵T1区
          会议通知:第六届食品科技创新论坛4月与您相约上海