Difference Analysis of Major Quality Components in Different Turning over Intensities of Chungui Oolong Tea in Northern Fujian
-
摘要: 为探讨春闺品种加工闽北乌龙茶的工艺特点,本文采用感官审评、生化分析、超高效液相色谱三重四级杆串联质谱(UPLC-QqQ-MS)及顶空固相微萃取法结合气相色谱-飞行时间质谱联用技术(HS-SPME-GC-TOF-MS),研究不同摇青程度春闺闽北乌龙茶在感官品质、理化品质、儿茶素组分、氨基酸组分、挥发性物质等方面的差异。结果表明:轻摇处理外形紧结,花香显,滋味鲜爽,感官品质总分90.6;重摇处理外形稍松,花香显,滋味浓醇,感官总分88.0。轻摇春闺各儿茶素组分均显著高于重摇(P<0.05),氨基酸含量总体高于重摇处理,氨基酸组分含量中谷氨酰胺及精氨酸存在极显著差异(P<0.01),重摇处理后茶氨酸与谷氨酸含量降低较多。随着摇青程度的增加,橙花叔醇、香叶醇、己酸叶醇酯、苯甲醇、己酸己酯含量显著增加(P<0.05),吲哚、α-法呢烯、茉莉内酯、苯乙醇、二氢猕猴桃内酯及脱氢芳樟醇含量显著减少(P<0.05)。综上,春闺茶轻摇青处理,茶汤滋味鲜爽,收敛性强,香气高扬且花果香显,茶多酚、儿茶素及氨基酸含量高;重摇青处理,滋味浓醇回甘好,香气层次丰富花香显,黄酮含量高,儿茶素与氨基酸含量明显下降。这可为闽北地区春闺乌龙茶加工定向品质调控提供理论依据。Abstract: In order to explore the processing technology characteristics of northern Fujian oolong tea processed by Chungui variety, sensory evaluation, biochemical analysis, ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS) and headspace solid-phase microextraction combined with gas chromatography-time of flight mass spectrometry (HS-SPME-GC-TOF-MS) were used to investigate the differences in sensory quality, physicochemical quality, catechin fraction, amino acid fraction and volatile substances of northern Fujian oolong tea at different turning over intensities. The results showed that the light turning over intensity treatment had tight shape, with a distinctive floral aroma and fresh taste, and the total score of sensory quality was 90.6, and heavy turning over intensity treatment had slightly loose shape, floral fragrance and a strong mellow taste, sensory score 88.0. The catechin components were all significantly higher in the light turning over intensity treatment of Chungui than heavy turning over intensity treatment (P<0.05). The amino acid content of the light turning over intensity treatment was generally higher than that of the heavy turning over intensity treatment, with highly significant differences in the content of glutamine and arginine (P<0.01), and a greater reduction in the content of theanine and glutamate. As the degree of turning over intensity increased, the contents of nerolidol, geraniol, caprylate, benzyl alcohol and caprylate increased significantly (P<0.05) and the contents of indole, α-farnesene, jasmonolactone, phenethyl alcohol, dihydrokiwiolactone and dehydrolinalool decreased significantly (P<0.05). In conclusion, the light turning over intensity treatment of Chungui tea, tea soup taste fresh, strong convergence, high aroma and flowers and fruits fragrance, tea polyphenols, catechins and amino acids content, the heavy turning over intensity treatment resulted in a rich and mellow taste with good sweetness, rich and floral aroma, high flavonoid content and a significant decrease in catechin and amino acid. This study can provide a theoretical basis for the processing oriented quality control of Chungui oolong tea in northern Fujian.
-
Key words:
- Chungui /
- northern Fujian oolong tea /
- turning over intensity /
- taste /
- aroma
-
图 2 不同摇青程度对春闺毛茶呈味氨基酸含量的影响
Figure 2. Effects of different turning over intensity on flavor amino acid of Chungui tea
注:*表示两个样本之间差异显著(P<0.05),**表示两个样本之间差异极显著(P<0.01),图4同。
表 1 不同摇青程度春闺毛茶感官审评结果
Table 1. Sensory evaluation of Chungui tea in different turning over intensity
名称 外形(20%) 汤色(5%) 香气(30%) 滋味(35%) 叶底(10%) 综合评分 评语 分数 评语 分数 评语 分数 评语 分数 评语 分数 QM 匀整紧结、青褐乌润、红点多 95 橙黄明亮 95 花果香显 91 鲜爽收敛性强 88 匀整明亮带红边 87 90.6 ZM 壮结稍松、青褐乌润 90 深橙黄明亮 95 花香显 90 浓醇回甘显 88 软嫩明亮红边多 85 88.0 表 2 不同摇青程度春闺毛茶非挥发物含量
Table 2. Non-volatile components of Chungui tea in different turning over intensity
成分 QM ZM 含水率(%) 5.88±0.00A 4.69±0.02B 水浸出物(%) 36.36±1.04 32.31±3.17 茶多酚(%) 14.36±0.01a 13.71±0.10b 氨基酸(%) 2.64±0.01A 2.19±0.02B 咖啡碱(%) 4.12±0.08 4.03±0.16 黄酮(mg/g) 11.02±0.55 12.37±0.42 茶红素(%) 0.87±0.03B 1.23±0.02A 茶黄素(%) 0.05±0.00B 0.06±0.00A 茶褐素(%) 2.14±0.05a 1.89±0.01b 酚氨比 5.45±0.02B 6.28±0.02A 注:同行不同小写字母代表差异显著(P<0.05),同行不同大写字母代表差异极显著(P<0.01),表3~表4同。 表 3 不同摇青程度春闺毛茶儿茶素组分及咖啡碱含量
Table 3. Catechin components and caffeine content of Chungui tea in different turning over intensity
类型 组分 QM(mg/g) ZM(mg/g) 酯型儿茶素 EGCG 58.59±6.4A 38.28±1.12B ECG 16.83±1.97A 10.92±0.3B EGCG3"ME 3.35±0.45A 2.07±0.04B 总计 78.77±8.82A 51.27±1.46B 非酯型儿茶素 EC 5.67±0.38a 3.26±1.06b C 0.51±0.04a 0.38±0.00b GC 0.97±0.14a 0.87±0.00b EGC 33.39±3.87a 24.54±0.51b 总计 40.54±4.43a 29.05±1.57b 咖啡碱 46.06±0.09 41.25±0.35 表 4 不同摇青程度春闺毛茶氨基酸组分含量
Table 4. Amino acid components of Chungui tea in different turning over intensity
类型 组分 QM(mg/g) ZM(mg/g) 苦味类 异亮氨酸 0.20±0.05 0.16±0.05 色氨酸 0.44±0.11 0.40±0.08 组氨酸 0.19±0.01a 0.14±0.03b 苯丙氨酸 0.76±0.20 0.62±0.15 丙氨酸 0.05±0.01a 0.05±0.03b 亮氨酸 0.23±0.05 0.19±0.04 缬氨酸 0.20±0.05 0.18±0.04 γ-氨基丁酸 0.24±0.02 0.20±0.03 鲜味类 甘氨酸 0.11±0.06 0.17±0.05 茶氨酸 3.11±0.29 2.57±0.23 谷氨酸 1.98±0.11a 1.42±0.27b 天冬酰胺 0.42±0.07 0.29±0.06 天冬氨酸 1.39±0.15 1.25±0.47 甜味类 丝氨酸 0.82±0.06a 0.56±0.24b 脯氨酸 0.24±0.03 0.18±0.03 苏氨酸 0.02±0.00 0.01±0.00 谷氨酰胺 0.02±0.00A 0.01±0.00B 芳香类 赖氨酸 0.23±0.02 0.18±0.06 精氨酸 0.26±0.00A 0.15±0.03B 酪氨酸 0.55±0.08 0.50±0.08 总计 12.44±1.11 9.85±1.49 表 5 不同摇青程度春闺毛茶主要差异挥发性物质
Table 5. Main differential volatile components of Chungui tea at different turning over intensity
类型 挥发性物质 香气特征[32−36] 相对含量(%) QM ZM 酸类化合物 己酸 干酪气味 ND 5.84 正戊酸 不愉快气味 ND 0.80 香叶酸 油脂青香 ND 0.65 庚酸 发酵香、果香 ND 0.56 壬酸 油脂香、椰子香 0.45 0.98 醇类化合物 橙花叔醇 花香、木质香 10.88 11.61 香叶醇 玫瑰香 4.95 5.53 苯乙醇 蔷薇类柔和花香 4.29 4.17 脱氢芳樟醇 花香、青草香、木香 3.01 2.97 苯甲醇 似苹果香气 1.23 1.35 顺式芳樟醇氧化物 甜香、花香、奶油香 0.96 1.06 反式吡喃芳樟
醇氧化物木香 0.97 1.02 糠醇 油脂香 0.26 0.30 3-异丙基-4-甲基-1-
戊炔-3-醇− 0.29 0.34 正戊醇 杂醇油气味 0.44 0.47 己醇 清香、果香 0.12 0.19 橙花醇 青甜玫瑰香 0.11 0.17 反式芳樟醇氧化物
(呋喃类)木香 1.16 1.09 4-甲基-3-戊烯-2-醇 − 0.70 0.52 2,6-二甲基-3,7-辛二烯-26-二醇 − 2.13 1.95 芳樟醇 玫瑰花香、柠檬香 0.66 0.52 酯类化合物 己酸叶醇酯 清新果香 3.24 3.63 茉莉内酯 花香 6.40 4.62 己酸己酯 水果香 0.47 0.98 苯甲酸己酯 花香 0.23 0.61 邻苯二甲酸二(1-己烯-5-基)酯 − ND 0.86 二氢猕猴桃内酯 香豆素气味 1.63 1.00 正戊酸叶醇酯 ND 0.36 苯甲酸顺-3-乙烯酯 − 0.78 1.01 己酸-反-2-己烯酯 − 0.40 0.67 2-甲基丁酸-顺-3-己烯酯 − 0.24 0.45 丁酸苯乙酯 水果香,似玫瑰芳香 0.18 0.35 丙位壬内酯 似椰子香 0.31 0.41 异戊酸己酯 有水果香味 0.03 0.12 2-苯基乙基丙酸酯 − 0.05 0.14 顺-3-己烯基丁酯 果香、青香、奶油香 0.16 0.22 醛类化合物 正己醛 青草香、叶香 0.36 0.40 苯乙醛 甜香 0.20 0.24 (E,E)-2,4-庚二烯醛 甜香,柑橘香 0.33 0.18 苯甲醛 苦杏味、焦糖香 0.22 0.29 烷烃类化合物 十四烷 − 0.75 0.57 广藿香烷 木香、樟脑香 0.39 0.17 1-(苯基)-2-硝基乙烷 − 0.30 0.47 6-氮杂双环[3.2.1]辛烷 − 0.76 0.77 酮类化合物 反式-β−紫罗兰酮 茉莉类甜醇花香 0.81 0.60 6-甲基-5-庚烯-2-酮 柑橘,柠檬草 1.28 0.91 4-甲基-3-戊烯-2-酮 似蜂蜜香 0.31 0.41 4-[2,2,6-三甲基-7-氧杂二环[4.1.0]庚-1-基]-3-丁烯-2-酮 − 0.96 0.67 2,3-二氢-3,5二羟基-6-甲基-4(H)-吡喃-4-酮 − 0.32 0.21 香叶基丙酮 玫瑰香、叶香、醛香、果香 1.97 1.40 3,5-二氢-3H-吡咯-2-酮 − 0.34 0.34 烯烃类化合物 α-法呢烯 花果香 5.36 3.75 含氮杂氧化合物 吲哚 花香 11.98 8.12 咖啡碱 − 6.74 5.10 苄基腈 − 0.37 0.73 6-甲基-3,6-二氢-2H-吡喃 − 0.39 0.44 注:“ND”表示该成分未检出。 -
[1] 王秀萍, 钟秋生, 陈常颂, 等. 高香茶树新品种春闺的选育与品质鉴定[J]. 福建农业学报,2017,32(6):593−601. [WANG X P, ZHONG Q S, CHEN C S, et al. Breeding and characterization of a new highly aromatic tea cultivar, Chungui[J]. Fujian Journal of Agricultural Sciences,2017,32(6):593−601. doi: 10.19303/j.issn.1008-0384.2017.06.005 [2] 钟秋生, 李鑫磊, 林郑和, 等. ‘春闺’乌龙茶加工过程中香气成分的变化研究[J]. 茶业通报,2021,43(1):21−31. [ZHONG Q S, LI X l, LIN Z H, et al. Study on the changes of aroma components in Oolong tea during processing[J]. Journal of Tea Business,2021,43(1):21−31. doi: 10.16015/j.cnki.jteabusiness.2021.0006 [3] 李鑫磊, 邓慧莉, 钟秋生, 等. ‘春闺’与‘福云6号’乌龙茶香气组分差异研究[J]. 茶叶学报,2021,62(3):112−116. [LI X L, DENG H L, ZHONG Q S, et al. Aromatic differentiations of Oolong teas[J]. Acta Tea Sinica,2021,62(3):112−116. [4] 中华人民共和国国家质量监督检验检疫总局. 地理标志产品武夷岩茶. GB/T 18745-2006[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2006.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Product of geographical indication-Wuyi rock-essence tea GB/T 18745-2006[S]. Beijing: Standards Press of China, 2006. [5] ZENG L, ZHOU Y, FU X, et al. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses[J]. Journal of Agricultural and Food Chemistry,2018,66(15):3899−3909. doi: 10.1021/acs.jafc.8b00515 [6] 陈寿松, 金心怡, 游芳宁, 等. 多次间歇LED光照射对铁观音风味组分的影响[J]. 农业工程学报,2018,34(2):308−314. [CHEN S S, JIN X Y, YOU F N, et al. Influence of multi intermittence radiation by LED on flavor components in Tieguanyin tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2018,34(2):308−314. doi: 10.11975/j.issn.1002-6819.2018.02.042 [7] 胡清财, 郑玉成, 杨云, 等. 茶树COI1基因家族的鉴定及其在乌龙茶加工中的表达[J]. 应用与环境生物学报,2022,28(6):1496−1502. [HU Q C, ZHENG Y C, YANG Y, et al. Identification and expression of COI1 gene family in Camellia sinensis and Its expression in Oolong tea processing[J]. Chinese Journal of Applied and Environmental Biology,2022,28(6):1496−1502. doi: 10.19675/j.cnki.1006-687x.2021.07026 [8] 吴晴阳, 周子维, 武清扬, 等. 乌龙茶加工过程中α-法呢烯的形成关键调控基因的筛选与表达分析[J]. 食品工业科技,2020,41(15):135−142. [WU Q Y, ZHOU Z W, WU Q Y, et al. Screening and expression analysis of key regulator gene associated with α-farnesene formation during manufacturing process of oolong tea[J]. Science and Technology of Food Industry,2020,41(15):135−142. [9] 周子维, 刘宝顺, 武清扬, 等. 基于LOX-HPL途径的武夷肉桂加工中香气物质的形成与调控[J]. 食品与生物技术学报,2021,40(1):100−111. [ZHOU Z W, LIU B S, WU Q Y, et al. Formation and regulation of aroma-telated volatilesduring the manufacturing process of Wuyi Rougui tea via LOX-HPL pathway[J]. Journal of Food Science and Biotechnology,2021,40(1):100−111. doi: 10.3969/j.issn.1673-1689.2021.01.013 [10] 杨云, 刘彬彬, 周子维, 等. 新品系‘606’乌龙茶加工过程中呈味物质的变化与品质分析[J]. 食品工业科技,2021,42(23):311−318. [YANG Y, LIU B B, ZHOU Z W, et al. Changes of taste compounds and quality analysis during the manufacturing process of a new tea line ‘606’ Oolong tea[J]. Science and Technology of Food Industry,2021,42(23):311−318. doi: 10.13386/j.issn1002-0306.2021030253 [11] 唐邦明, 吴阳风, 陈 迪, 等. 基于广泛靶向代谢组学的乌龙茶加工过程中差异代谢物分析[J]. 食品科技,2021,46(11):81−89. [TANG B M, WU Y F, CHEN D, et al. Analysis on differential metabolites of the samples from Oolong tea production based on widely-targeted metabonomic approach[J]. Food Science and Technology,2021,46(11):81−89. doi: 10.3969/j.issn.1005-9989.2021.11.spkj202111013 [12] 周子维, 游芳宁, 刘彬彬, 等. 摇青机械力对乌龙茶脂肪族类香气形成的影响[J]. 食品科学,2019,40(13):52−59. [ZHOU Z W, YOU F N, LIU B B, et al. Effect of mechanical force during turning-over on the formation of aliphatic aroma in Oolong tea[J]. Food Science,2019,40(13):52−59. doi: 10.7506/spkx1002-6630-20180528-377 [13] 邓慧莉, 李鑫磊, 毛贻帆, 等. 不同做青温度对乌龙茶滋味与香气品质的影响[J]. 食品安全质量检测学报,2021,12(14):5766−5771. [DENG H L, LI X L, MAO Y F, et al. Effect of different turning-over temperatures on the taste and aroma quality of Oolong tea[J]. Journal of Food Safety and Quality,2021,12(14):5766−5771. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.14.037 [14] 陈常颂, 余文权, 单睿阳, 等. 不同时间杀青对“春闺”闽南乌龙茶感官品质的影响[J]. 中国茶叶,2015,37(1):24−25. [CHEN C S, YU W Q, SHAN R Y, et al. Effect of different de-enzyme time on sensory quality of 'Chungui' Minnan Oolong tea[J]. China Tea,2015,37(1):24−25. doi: 10.3969/j.issn.1000-3150.2015.01.012 [15] 中华人民共和国国家质量监督检验检疫总局. 茶叶感官审评方法. GB/T 23776-2018[S]. 北京: 中国标准出版社, 2018.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Methodology for sensory evaluation of tea GB/T 23776-2018[S]. Beijing: Standards Press of China, 2018. [16] 中华人民共和国国家质量监督检验检疫总局. 茶 水浸出物测定. GB/T 8305-2013[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Tea-Determination of water extracts content GB/T 8305-2013[S]. Beijing: Standards Press of China, 2013. [17] 中华人民共和国国家质量监督检验检疫总局. 茶叶中茶多酚和儿茶素类含量的检测方法. GB/T 8313-2018[S]. 北京: 中国标准出版社, 2018.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of total polyphenols and catechins content in tea GB/T 8313-2018[S]. Beijing: Standards Press of China, 2018. [18] 中华人民共和国国家质量监督检验检疫总局. 茶 游离氨基酸总量的测定. GB/T 8314-2013[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Tea-Determination of free amino acids content GB/T 8314-2013[S]. Beijing: Standards Press of China, 2013. [19] 何书美, 刘敬兰. 茶叶中总黄酮含量测定方法的研究[J]. 分析化学,2007(9):1365−1368. [HE S M, LIU J L. Study on the determination method of total flavonoids in tea[J]. Chinese Journal of analytical Chemistry,2007(9):1365−1368. doi: 10.3321/j.issn:0253-3820.2007.09.028 [20] 中华人民共和国国家质量监督检验检疫总局. 茶 磨碎试样的制备及其干物质含量测定. GB/T 8303-2013[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Tea-Preparation of ground sample and determination of dry matter content GB/T 8303-2013[S]. Beijing: Standards Press of China, 2013. [21] 张正竹. 茶叶生物化学实验教程[M]. 中国农业出版社, 2009.ZHANG Z Z. Tea biochemistry experiment course[M]. China Agriculture Press, 2009. [22] 国家市场监督管理总局. 植物中游离氨基酸的测定. GB/T 30987—2020[S]. 北京: 中国标准出版社, 2020.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of free amino acids in plant GB/T 30987-2020[S]. Beijing: Standards Press of China, 2020. [23] 魏子淳, 庄加耘, 孙志琳, 等. 不同摊叶厚度晾青对武夷岩茶品质的影响[J/OL]. 食品工业科技: 1−15 [2022-10-19]. DOI: 10.13386/j.issn1002-0306.2022060109.WEI Z C, ZHUANG J Y, SUN Z L, et al. Effects on the quality of Wuyi rock tea with different airing thicknesses[J]. Science and Technology of Food Industry, 1−15[2022-10-19]. DOI: 10.13386/j.issn1002-0306.2022060109. [24] 蒋丹, 杨清, 边金霖, 等. 四川乌龙茶做青程度对品质形成的影响[J]. 食品科学,2014,35(11):66−71. [JIANG D, YANG Q, BIAN J L, et al. Effects of tossing on quality formation of Sichuan Oolong tea[J]. Food Science,2014,35(11):66−71. doi: 10.7506/spkx1002-6630-201411014 [25] ASTILL C, BIRCH M R, DACOMBE C, et al. Factors affecting the caffeine and polyphenol contents of black and green tea infusions[J]. Journal of Agricultural and Food Chemistry,2001,49(11):5340−5347. doi: 10.1021/jf010759+ [26] 刘洪林, 曾艺涛, 赵欣. 乌龙茶加工过程中儿茶素的稳定性及化学变化[J]. 食品科学,2019,40(16):69−74. [LIU H L, ZENG Y T, ZHAO X. Stability and chemical changes of catechins during Oolong tea processing[J]. Food Science,2019,40(16):69−74. doi: 10.7506/spkx1002-6630-20180727-326 [27] LIU P P,YIN J F,CHEN G S,et al. Flavor characteristics and chemical compositions of oolong tea processed using different semi-fermentation times[J]. Journal of Food Science and Technology,2018,55(3):1185−1195. [28] 宛晓春, 李大祥, 张正竹, 等. 茶叶生物化学研究进展[J]. 茶叶科学,2015,35(1):1−10. [WAN X C, LI D X, ZHANG Z Z, et al. Research progress in tea biochemistry[J]. Tea Sci,2015,35(1):1−10. doi: 10.3969/j.issn.1000-369X.2015.01.003 [29] 李平. 茶叶深加工(四)——茶氨酸[J]. 茶业通报,2005(3):142−143. [LI P. Deep processing of tea (IV)-Theanine[J]. Journal of Tea Business,2005(3):142−143. doi: 10.16015/j.cnki.jteabusiness.2005.03.028 [30] JIA X, YE J, WANG H, et al. Characteristic amino acids in tea leaves as quality indicator for evaluation of Wuyi rock tea in different cultured tegions[J]. Journal of Applied Botany and Food Quality,2018,91:187−193. [31] YANG Z, BALDERMANN S, WATANABE N. Recent studies of the volatile compounds in tea[J]. Food Research International,2013,53(2):585−599. doi: 10.1016/j.foodres.2013.02.011 [32] 何洛强. 经典花香的演绎[C]//第十届中国香料香精学术研讨会论文集, 2014.HE L Q, Deduction of classic floral note[C]//Proceedings of the 10th China Spices Symposium, 2014. [33] 王丽丽, 张应根, 杨军国, 等. 顶空固相微萃取/气相色谱——质谱联用法分析绿茶和白茶香气物质[J]. 茶叶学报,2017,58(1):1−7. [WANG L L, ZHANG Y G, YANG J G, et al. Analysis of aroma components in green and white teas using headspace solid phase microextraction coupled with gas chromatography-mass spectrometry[J]. Acta Tea Sinica,2017,58(1):1−7. doi: 10.3969/j.issn.1007-4872.2017.01.001 [34] 刘晔, 葛丽琴, 王远兴. 3个产地不同等级庐山云雾茶挥发性成分主成分分析[J]. 食品科学,2018,39(10):206−214. [LIU Y, GE L Q, WANG Y X. Principal component analysis of volatile compounds in different grades of Lu Mountain Clouds-Mist tea from three regions[J]. Food Science,2018,39(10):206−214. doi: 10.7506/spkx1002-6630-201810032 [35] 肖凌. 十种香型凤凰单丛茶香气成分分析[D]. 重庆: 西南大学, 2018.LIN X. Study on aroma components of ten types of Fenghuang Dancong tea[D]. Chongqing: Southwest University, 2018. [36] 蒋青香, 李慧雪, 李利君, 等. 基于感官检验和气相色谱-质谱联用对白芽奇兰茶叶香气分级[J]. 食品科学,2021,42(20):98−106. [JIANG Q X, LI H X, LI L J, et al. Aroma classification of Baiyaqilan tea by sensory test and gas chromatography-mass spectrometry[J]. Food Science,2021,42(20):98−106. doi: 10.7506/spkx1002-6630-20201022-224 [37] 任道群, 唐玉明, 姚万春, 等. 酯化酶动力学研究[J]. 酿酒科技,2006(6):39−40. [REN D Q, TANG Y M, YAO W C, et al. Research on the kinetics of esterifying enzyme[J]. Liquor- making Science & Technology,2006(6):39−40. doi: 10.3969/j.issn.1001-9286.2006.06.007 [38] 张钰乾. 菠萝芳香物质组成及其影响因子研究[D]. 南宁: 广西大学, 2013.ZHANG Y Q. Research on aroma components of pineapple fruit (Ananas comosus) and their influencing factors[D]. Nanning: Guangxi University, 2013. [39] 武清扬, 周子维, 倪子鑫, 等. 茶树品种及摇青强度对乌龙茶脂肪酸含量的影响[J]. 南方农业学报,2021,52(10):2834−2841. [WU Q Y, ZHOU Z W, NI Z X, et al. Effects of tea varieties and turning over intensity on fatty acidcontent in Oolong tea[J]. Journal of Southern Agriculture,2021,52(10):2834−2841. doi: 10.3969/j.issn.2095-1191.2021.10.024 [40] CHEN S, LIU H, ZHAO X, et al. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during Oolong tea manufacture[J]. Food Research International,2020,128(C):108778. [41] WANG L, LEE J, CHUNG J, et al. Discrimination of teas with different degrees of fermentation by SPME-GC analysis of the characteristic volatile flavour compounds[J]. Food Chemistry,2008,109(1):196−206. doi: 10.1016/j.foodchem.2007.12.054 [42] FENG Z, LI M, LI Y, et al. Characterization of the Orchid-like aroma contributors in selected premium tea leaves[J]. Food Research International,2020,129(C):108841. [43] HU C, LI D, MA Y, et al. Formation mechanism of the Oolong tea characteristic aroma during bruising and withering treatment[J]. Food Chemistry,2018,269(15):202−211. [44] 廉明, 吕世懂, 吴远双, 等. 三种不同发酵程度的台湾乌龙茶香气成分对比研究[J]. 食品工业科技,2015,36(3):297−302. [LIAN M, LÜ S D, WU Y S, et al. Comparative analysis of aroma characteristics of three kinds of Taiwan Oolong tea from different fermentation degree[J]. Science and Technology of Food Industry,2015,36(3):297−302. doi: 10.13386/j.issn1002-0306.2015.03.054 -