• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020

超高压处理对大豆拉丝蛋白特性的影响

张凯强 何晓叶 卫姣 袁芳

张凯强,何晓叶,卫姣,等. 超高压处理对大豆拉丝蛋白特性的影响[J]. 食品工业科技,2023,44(11):103−110. doi:  10.13386/j.issn1002-0306.2022070306
引用本文: 张凯强,何晓叶,卫姣,等. 超高压处理对大豆拉丝蛋白特性的影响[J]. 食品工业科技,2023,44(11):103−110. doi:  10.13386/j.issn1002-0306.2022070306
ZHANG Kaiqiang, HE Xiaoye, WEI Jiao, et al. Effects of High Pressure Processing Treatment on Properties of Drawing Soy Protein[J]. Science and Technology of Food Industry, 2023, 44(11): 103−110. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070306
Citation: ZHANG Kaiqiang, HE Xiaoye, WEI Jiao, et al. Effects of High Pressure Processing Treatment on Properties of Drawing Soy Protein[J]. Science and Technology of Food Industry, 2023, 44(11): 103−110. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022070306

超高压处理对大豆拉丝蛋白特性的影响

doi: 10.13386/j.issn1002-0306.2022070306
详细信息
    作者简介:

    张凯强(1997−),男,硕士研究生,研究方向:功能性食品,E-mail:zhangkaiqiang2021@163.com

    通讯作者:

    袁芳(1967−),女,博士,副教授,研究方向:天然产物与功能食品,E-mail:yuanfang@cau.edu.cn

  • 中图分类号: TS201.1

Effects of High Pressure Processing Treatment on Properties of Drawing Soy Protein

  • 摘要: 本文研究了超高压处理对大豆拉丝蛋白特性的影响,以达到改善其再加工特性的目的。实验利用不同超高压处理条件(200~600 MPa,10~30 min)对大豆拉丝蛋白进行处理,采用傅里叶变换红外光谱、紫外吸收光谱和内源荧光光谱分析超高压对大豆拉丝蛋白结构的影响,并通过持水力、表面相对疏水性、游离巯基含量的变化研究超高压对大豆拉丝蛋白功能特性的影响。结果表明:随着压力和时间的增加,β-折叠、无规则卷曲相对含量上升,大豆拉丝蛋白的二级结构向着无序化方向进行;同时蛋白质三级结构伸展,内部疏水基团暴露量增多,但过大的压力和过长的时间则会使得疏水基团重新包埋。400 MPa、10 min时,大豆拉丝蛋白的持水力、游离巯基含量以及表面相对疏水性达到最大值,分别比对照组高32.87%、41.57%、15.66%。综上,适当条件的超高压处理有利于提高大豆拉丝蛋白再加工特性,这为超高压技术应用于大豆拉丝蛋白的生产提供参考。
  • 图  1  超高压处理前后DSP的傅里叶变换红外光谱

    Figure  1.  FTIR of DSP before and after high pressure processing treatment

    注:A:保压时间为10 min;B:保压时间为20 min;C:保压时间为30 min;图2~图4同。

    图  2  超高压处理前后DSP二级结构相对含量的变化

    Figure  2.  Changes of relative content of DSP secondary structure before and after high pressure processing treatment

    图  3  超高压处理前后DSP紫外吸收光谱的变化

    Figure  3.  Changes of UV absorption spectrum of DSP before and after high pressure processing treatment

    图  4  超高压处理前后DSP内源荧光光谱的变化

    Figure  4.  Changes of endogenous fluorescence spectrum of DSP before and after high pressure processing treatment

    图  5  超高压处理对DSP持水力的影响

    Figure  5.  Effects of high pressure processing treatment on water holding capacity of DSP

    注:小写字母不同表示不同压强和保压时间的处理组之间差异显著,P<0.05;图6~图7同。

    图  6  超高压处理前后DSP表面相对疏水性的变化

    Figure  6.  Changes of surface hydrophobicity of DSP before and after high pressure processing treatment

    图  7  超高压处理前后DSP游离巯基的变化

    Figure  7.  Changes of free SH content of DSP before and after high pressure processing treatment

  • [1] TALUKDER S. Effect of dietary fiber on properties and acceptance of meat products: A review[J]. Critical Reviews in Food Science and Nutrition,2015,55(7):1005−1011. doi:  10.1080/10408398.2012.682230
    [2] 杨柳青. 大豆拉丝蛋白素食肉干工艺[J]. 食品工业,2021,42(7):78−82. [YANG L Q. The processing technology of vegetarian jerky with soybean drawing protein[J]. The Food Industry,2021,42(7):78−82.
    [3] 白莉莉, 陈玉玲, 杨梅, 等. 大豆拉丝蛋白不同加工方式对高脂血症小鼠降脂功效的影响[J]. 食品工业科技,2021,42(9):334−339. [BAI L L, CHEN Y L, YANG M, et al. Effects of different processing methods of soybean silk protein on lipid-lowering efficacy of hyperlipidemia mice[J]. Science and Technology of Food Industry,2021,42(9):334−339.
    [4] 吴进莲. 以大豆拉丝蛋白为基底的素肉干加工工艺研究[D]. 广州: 广东工业大学, 2021

    WU J L. Study on processing technology of plain meat jerky based on Textured fibril soy protein[D]. Guangzhou: Guangdong University of Technology, 2021.
    [5] 陈林, 陈维, RAMMILE E, 等. 油脂预乳化提高大豆拉丝蛋白素食香肠品质[J]. 农业工程学报,2021,37(13):291−298. [CHEN L, CHEN W, RAMMILE E, et al. Improving the quality of vegetarian sausage prepared with textured fibril soy protein using oil pre-emulsification[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(13):291−298.
    [6] SASIMAPORN S, THE-THIRI M, BON-YEOB G, et al. Influences of extrusion parameters on physicochemical properties of textured vegetable proteins and its meatless burger patty[J]. Food Science and Biotechnology,2021,30(3):1−9.
    [7] VK J, SATISH K. Meat analogues: Plant based alternatives to meat products-A review[J]. International Journal of Food and Fermentation Technology,2015,5(2):107−119. doi:  10.5958/2277-9396.2016.00001.5
    [8] 柳旺, 蒋肇样, 贾冬英, 等. 米曲霉固态发酵程度对大豆拉丝蛋白特性的影响[J]. 中国油脂,2019,44(5):128−131. [LIU W, JIANG Z Y, JIA D Y, et al. Effects of solid-state fermentation degree by Aspergillus oryzae on the properties of drawing soy protein[J]. China Oils and Fats,2019,44(5):128−131.
    [9] 郭顺堂, 徐婧婷, 刘欣然, 等. 我国植物蛋白资源高效利用途径与技术创新[J]. 食品科学技术学报,2019,37(6):8−15. [GUO S T, XU J T, LIU X R, et al. Efficient utilization and technological innovation of plant-based protein resources in China[J]. Journal of Food Science and Technology,2019,37(6):8−15.
    [10] SU J, WANG L, DONG W, et al. Fabrication and characterization of ultra-high-pressure (UHP)-induced whey protein isolate/κ-carrageenan composite emulsion gels for the delivery of curcumin[J]. Frontiers in Nutrition,2022,9:839761. doi:  10.3389/fnut.2022.839761
    [11] PENNA A L B, SUBBARAO-GURRAM G V B. High hydrostatic pressure processing on microstructure of probiotic low-fat yogurt[J]. Food Research International,2007,40(4):510−519. doi:  10.1016/j.foodres.2007.01.001
    [12] TAN M, XU J, GAO H, et al. Effects of combined high hydrostatic pressure and pH-shifting pretreatment on the structure and emulsifying properties of soy protein isolates[J]. Journal of Food Engineering,2021,306(prepublish):110622.
    [13] 王炳智. 高压与TG酶处理对小麦面筋蛋白的凝胶性影响研究[D]. 合肥: 合肥工业大学, 2019

    WANG B Z. Effect of high pressure and TGase treatment on gel properties of wheat gluten[D]. Hefei: Hefei University of Technology, 2019.
    [14] KUMAR P, CHATLI M K, MEHTA N, et al. Meat analogues: Health promising sustainable meat substitutes[J]. Critical Reviews in Food Science and Nutrition,2017,57(5):923−932. doi:  10.1080/10408398.2014.939739
    [15] 黄薇. 超高压对小麦面筋蛋白改性及应用的研究[D]. 天津: 天津科技大学, 2016

    HUANG W. Study on the modification and application of wheat gluten by ultra high pressure[D]. Tianjin: Tianjin University of Science and Technology, 2016.
    [16] CHEN G, EHMKE L, MILLER R, et al. Effect of sodium chloride and sodium bicarbonate on the physicochemical properties of soft wheat flour doughs and gluten polymerization[J]. Journal of Agricultural and Food Chemistry,2018,66(26):6840−6850. doi:  10.1021/acs.jafc.8b01197
    [17] ALI JAHANBAN, VAHID P. Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking[J]. Food Chemistry,2016,202:426−431. doi:  10.1016/j.foodchem.2016.02.026
    [18] 臧艳妮. 物理预处理对小麦蛋白糖基化改性的影响[D]. 合肥: 合肥工业大学, 2017

    ZANG Y N. Effect of physical pretreatment on wheat protein glycosylation modification[D]. Hefei: Hefei University of Technology, 2017.
    [19] TANG C, CHEN L, FOEGEDING E A. Mechanical and water-holding properties and microstructures of soy protein isolate emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and transglutaminase: Influence of thermal treatments before and/or after emulsification[J]. Journal of Agricultural and Food Chemistry,2011,59(8):4071−4077. doi:  10.1021/jf104834m
    [20] 苏丹, 李树君, 赵凤敏, 等. 超高压处理对大豆分离蛋白结构的影响[J]. 食品科技,2009,34(12):51−55. [SU D, LI S J, ZHAO F M, et al. Effects of hydrostatic high pressure on structure of soy protein isolates[J]. Food Science and Technology,2009,34(12):51−55.
    [21] GUO X F, SUN X H, ZHAO Y Y, et al. Interactions between soy protein hydrolyzates and wheat proteins in noodle making dough[J]. Food Chemistry,2018,245:500−507. doi:  10.1016/j.foodchem.2017.10.126
    [22] LECHUAN W, LISHA L, NUO X, et al. Effect of carboxymethylcellulose on the affinity between lysozyme and liposome monolayers: Evidence for its bacteriostatic mechanism[J]. Food Hydrocolloids,2020,98(C):26−39.
    [23] XI J, LI Y. The effects of ultra-high-pressure treatments combined with heat treatments on the antigenicity and structure of soy glycinin[J]. International Journal of Food Science & Technology,2021,56(10):5211−5219.
    [24] GUANHAO B, TINGWEI Z, FUSHENG C, et al. Effects of saccharide on the structure and antigenicity of β-conglycinin in soybean protein isolate by glycation[J]. European Food Research and Technology,2015,240(2):285−293. doi:  10.1007/s00217-014-2326-5
    [25] 杜丽娜. 超高压处理对荞麦13S球蛋白结构与功能特性的影响[D]. 上海: 上海应用技术大学, 2020

    DU L N. Effects of ultra-high pressure treatment on structure and function of buckwheat 13S globulin[D]. Shanghai: Shanghai Institute of Technology, 2020.
    [26] JINXIN L, MADHAV P Y, JINLONG L. Effect of different hydrocolloids on gluten proteins, starch and dough microstructure[J]. Journal of Cereal Science,2019,87:85−90. doi:  10.1016/j.jcs.2019.03.004
    [27] 谢凤英, 赵玉莹, 雷宇宸, 等. 超高压均质处理的米糠膳食纤维粉对面筋蛋白结构的影响[J]. 中国食品学报,2020,20(11):115−121. [XIE F Y, ZHAO Y Y, LEI Y C, et al. Effect of dietary fiber powder by ultra-high pressure homogenized rice bran on the structure of gluten protein[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(11):115−121. doi:  10.16429/j.1009-7848.2020.11.014
    [28] YA W, MENG N, BINJIA Z, et al. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments[J]. LWT-Food Science and Technology,2017,75:344−351. doi:  10.1016/j.lwt.2016.09.012
    [29] 何晓叶, 任爽, 郑伊琰, 等. 不同缓冲体系下超高压处理对乳铁蛋白结构及理化性质的影响[J]. 中国食品学报,2021,21(5):174−184. [HE X Y, REN S, ZHENG Y Y, et al. Effect of super high pressure processing on the structure and physicochemical properties of lactoferrin in different buffer systems[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(5):174−184.
    [30] 吴丹, 徐桂英. 光谱法研究蛋白质与表面活性剂的相互作用[J]. 物理化学学报,2006(2):254−260. [WU D, XU G Y. Study on protein-surfactant inter action by spectroscopic methods[J]. Acta Physico-Chimica Sinica,2006(2):254−260.
    [31] WANG Y, SUN R, XU X, et al. Structural interplay between curcumin and soy protein to improve the water-solubility and stability of curcumin[J]. International Journal of Biological Macromolecules,2021,193(PB):1471−1480.
    [32] 秦瑞旗. 谷朊粉超高压改性及其在面制品中的应用研究[D]. 郑州: 河南工业大学, 2019

    QIN R Q. Modification of vital wheat gluten and its application in flour products by ultra-high pressure[D]. Zhengzhou: Henan University of Technology, 2019.
    [33] PALLARÈS I, VENDRELL J, AVILÉS F X, et al. Amyloid fibril formation by a partially structured intermediate state of alpha-chymotrypsin[J]. Journal of Molecular Biology,2004,342(1):321−331. doi:  10.1016/j.jmb.2004.06.089
    [34] 林素丽. 超高压处理对米糠蛋白功能及结构特性的影响研究[D]. 杭州: 浙江大学, 2017

    LIN S L. Effect of high pressure treatment on functional and structural properties of rice bran protein[D]. Hangzhou: Zhejiang University, 2017.
    [35] SU G W, HE W W, ZHAO M M, et al. Effect of different buffer systems on the xanthine oxidase inhibitory activity of tuna (Katsuwonus pelamis) protein hydrolysate[J]. Food Research International,2018,105:556−562. doi:  10.1016/j.foodres.2017.11.037
    [36] 王正德. 豌豆分离蛋白对面团特性影响及其产品开发的研究[D]. 泰安: 山东农业大学, 2018

    WANG Z D. Effects of pea protein isolate on characteristics of wheat flour dough and the study of product development[D]. Taian: Shandong Agricultural University, 2018.
    [37] 钟昔阳. 小麦谷朊粉超高压改性加工研究[D]. 合肥: 合肥工业大学, 2009

    ZHONG X Y. Study of the manufacture of wheat gluten treated by ultra-high pressure[D]. Hefei: Hefei University of Technology, 2009.
    [38] OMANA D A, XU Y, MOAYEDI V, et al. Alkali-aided protein extraction from chicken dark meat: Chemical and functional properties of recovered proteins[J]. Process Biochemistry,2010,45(3):375−381. doi:  10.1016/j.procbio.2009.10.010
    [39] HONGKANG Z, LITE L, EIZO T, et al. High-pressure treatment effects on proteins in soy milk[J]. LWT-Food Science and Technology,2004,38(1):7−14.
    [40] SIRIPORN R, SOOTTAWAT B, WONNOP V, et al. Acid-induced gelation of natural actomyosin from Atlantic cod (Gadus morhua) and burbot (Lota lota)[J]. Food Hydrocolloids,2007,23(1):26−39.
    [41] 史乾坤, 王心雅, 甄诺, 等. 超高压预处理对TGase交联的大豆分离蛋白凝胶的影响[J]. 中国粮油学报,2021,36(9):94−100. [SHI Q K, WANG X Y, ZHEN N, et al. Effects of ultra high pressure pretreatment on TGase cross-linked soy protein isolate gel[J]. Journal of the Chinese Cereals and Oils Association,2021,36(9):94−100. doi:  10.3969/j.issn.1003-0174.2021.09.016
    [42] CHEN X, CHEN C G, ZHOU Y Z, et al. Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containing κ-carrageenan[J]. Food Hydrocolloids,2014,40:262−272. doi:  10.1016/j.foodhyd.2014.03.018
    [43] YANG W, LIU F G, XU C Q, et al. Molecular interaction between (-)-epigallocatechin-3-gallate and bovine lactoferrin using multi-spectroscopic method and isothermal titration calorimetry[J]. Food Research International,2014,64:141−149. doi:  10.1016/j.foodres.2014.06.001
  • 加载中
图(7)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  27
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-06-01

目录

    /

    返回文章
    返回