Optimization of Cooking Technology and Analysis of Quality of Flowering Vicia faba L.
-
摘要: 为优化开花蚕豆烹饪工艺,选取浸泡温度、浸泡时间、油炸温度和油炸时间4个工艺参数进行单因素和正交试验,并检测色差、质构、营养标签以及挥发性物质等指标。结果表明开花蚕豆最优工艺为:浸泡温度25 ℃、浸泡时间15 h、油炸温度180 ℃和油炸时间6 min。色差特征L*值71.05±1.22、a*值10.59±0.67、b*值29.31±1.46;质构特征酥脆性20.74±1.46 N、硬度26.67±1.33 N;营养标签每100 g开花蚕豆含能量1869.33±0.58 kJ、蛋白质18.83±0.40 g、脂肪26.93±0.21 g、碳水化合物33.40±0.10 g;GC-MS共检测出75种挥发性物质,主要为苯及其衍生物、醇类、烯烃类等,其中空白组37种、最优组40种,两组共有挥发性物质2种,空白组特征物质为对异丙基甲苯,最优组的特征性物质为1-异丙烯基-3-甲基苯;GC-IMS共检测出57种挥发性物质,主要为醇类、酯类、杂环类等,其中空白组44种、最优组42种,共有挥发性物质29种;蚕豆烹饪后醇类、醛类和酮类物质的种类和含量均有不同程度的下降,酯类和醚类物质有不同程度的上升,GC-MS和GC-IMS检测结果一致。此工艺优化下的开花蚕豆色泽金黄,酥脆可口,具有丰富的风味物质。Abstract: In order to optimize the cooking technology of flowering broad beans, four processing parameters including soaking temperature, soaking time, frying temperature and frying time were selected for single factor and orthogonal optimization experiments, and the indexes of color difference, texture, energy and nutrition, and volatile substances were detected. The results showed that the optimal process for producing flowering broad beans were: Soaking temperature 25 ℃, soaking time 15 h, frying temperature 180 ℃ and frying time 6 min. Color difference characteristics: L* 71.05±1.22, a* 10.59±0.67, b* 29.31±1.46, texture characteristics: Crispness 20.74±1.46 N, hardness 26.67±1.33 N, nutritional label: Each 100 g of flowering broad beans contained 1869.33±0.58 kJ of energy, 18.83±0.40 g of protein, 26.93±0.21 g of fat, 33.40±0.10 g of carbohydrate. The GC-MS test results showed that there were 75 volatile substances in the two groups of samples, mainly benzene and its derivatives, alcohols, olefins, etc, including 37 in the blank group, 40 in the optimal group, and 2 kinds of volatile substances in the two groups. The characteristic substance of the blank group was p-isopropyltoluene, and the characteristic substance of the optimal group was 1-isopropenyl-3-methylbenzene. The GC-IMS test results showed that there were 57 volatile substances in the two groups of samples, mainly alcohols, esters and heterocyclic, etc, including 44 in the blank group, 42 in the optimal group, and 29 kinds of volatile substances in the two groups. After processing, the types and contents of alcohols, aldehydes and ketones decreased in varying degrees, while esters and ethers increased in varying degrees. The results of GC-IMS and GC-MS were consistent. The flowering broad beans under the optimized technology are golden in color, crisp and delicious, and rich in flavor substances.
-
表 1 正交试验因素水平表
Table 1. Factors and level table of orthogonal test
水平 因素 A浸泡温度(℃) B浸泡时间(h) C油炸温度(℃) D油炸时间(min) 1 25 15 160 4 2 35 20 180 5 3 45 25 200 6 表 2 开花蚕豆感官评定标准(分)
Table 2. Sensory evaluation and scoring standard of flowering broad beans (points)
项目 标准 分值 色泽(30分) 豆粒呈淡黄色、均匀一致 21~30 豆粒呈淡黄色、蚕豆皮略有褐色 11~20 豆粒呈淡黄色、蚕豆皮呈褐色 0~10 酥脆度(30分) 酥脆可口 21~30 酥性一般、较脆 11~20 不酥脆、有颗粒感 0~10 风味(20分) 咀嚼浓香、口味浓厚 14~20 咀嚼较香、口味一般 7~13 咀嚼无香味、口味淡 0~6 形态(20分) 形态完整、颗粒饱满、颗粒均匀 14~20 形态较完整、颗粒较饱满、有不完善粒 7~13 形态不完整、颗粒不饱满、有不完整颗粒 0~6 表 3 开花蚕豆正交试验结果
Table 3. Orthogonal test results of flowering broad beans
序号 因素 感官得分(分) A B C D 1 1 1 1 1 64.7 2 1 2 2 2 84.9 3 1 3 3 3 88.7 4 2 1 2 3 92.3 5 2 2 3 1 74.5 6 2 3 1 2 66.7 7 3 1 3 2 83.2 8 3 2 1 3 70.8 9 3 3 2 1 69.8 K1 238.3 240.2 202.2 209.0 K2 233.5 230.2 247.0 234.8 K3 223.8 225.2 246.4 251.8 k1 79.43 80.07 67.40 69.67 k2 77.83 76.73 82.33 78.27 k3 74.60 75.07 82.13 83.93 R 4.83 5.00 14.73 14.27 主次顺序 C>D>B>A 最优水平 A1 B1 C2 D3 表 4 开花蚕豆空白对照组和感官最优组理化指标
Table 4. Physical and chemical indexes of flowering broad beans blank control group and sensory optimal group
特性 项目 空白对照组 感官最优组 色差 L* 82.90±1.49a 71.05±1.22b a* 5.32±0.39b 10.59±0.67a b* 22.67±1.60b 29.31±1.46a 质构 酥脆性(N) 58.61±2.54a 20.74±1.46b 硬度(N) 86.56±4.79a 26.67±1.33b 营养标签 能量(kJ/100 g) 1395.66±0.53b 1869.33±0.58a 蛋白质(g/100 g) 28.63±0.21a 18.83±0.40b 脂肪(g/100 g) 1.73±0.12b 26.93±0.21a 碳水化合物(g/100 g) 52.97±0.90a 33.40±0.10b 注:同行不同字母表示差异显著(P<0.05)。 表 5 基于气相色谱质谱联用鉴定开花蚕豆挥发性风味成分
Table 5. Identification of volatile flavor components of flowering broad beans based on GC-MS
类型 序号 中文名称 CAS号 相对含量(%) 空白组 最优组 烷烃类 1 2,7,10-三甲基十二烷 74645-98-0 0.108 − 2 3-甲基十三烷 6418-41-3 0.054 − 3 正十三烷 629-50-5 0.142 − 4 4-乙基-2,2,6,6-四甲基庚烷 62108-31-0 0.118 − 5 2,6,6-三甲基癸烷 62108-24-1 0.040 − 6 2,6-二甲基庚烷 54105-67-8 0.048 − 7 3-甲基-5-丙基壬烷 31081-18-2 0.026 − 8 环癸烷 293-96-9 0.022 − 9 2,4-二甲基庚烷 2213-23-2 0.140 − 10 2,3-二甲基癸烷 17312-44-6 0.026 − 11 3-甲基十一烷 1002-43-3 0.032 − 12 [1R,3R,(+)]-1-甲基-3-异丙基环己烷 13837-67-7 − 0.159 烯烃类 13 2-十一烯 60212-29-5 0.102 − 14 4,4-二甲基五-1,2-二烯 58368-66-4 1.262 − 15 (E)-8-甲基-8-七烯 55044-98-9 0.024 − 16 4-甲基-1-己烯 3769-23-1 0.296 − 17 对薄荷烯 18368-95-1 0.052 − 18 松油烯 99-86-5 − 0.026 19 7-甲氧基甲基-2,7-二甲基环庚-1,3,5-三烯 73992-48-0 − 0.013 20 1-异丙基-4α-甲基环己烯 619-52-3 − 1.349 21 5-(1,5-二甲基-4-己烯基)-2-甲基双环[3.1.0]hex-2-烯 58319-06-5 − 0.015 22 γ-榄香烯 3242-08-8 − 0.031 23 顺式-m-薄荷-8-烯 24399-15-3 − 0.189 24 莰烯 79-92-5 − 0.085 醇类 25 顺-3-甲基环己醇 5454-79-5 0.370 − 26 (R)-(-)-2-丁醇 14898-79-4 20.444 − 27 十一醇 112-42-5 0.160 − 28 正辛醇 111-87-5 0.100 − 29 α-(甲氨甲基)苯甲醇 6589-55-5 − 0.014 30 DL-氨基丙醇 6168-72-5 − 0.030 31 二氧化4-氨基四氢噻吩-3-醇 55261-00-2 − 0.021 32 桃金娘烯醇 515-00-4 − 0.014 33 2-甲基-6-(对甲苯基)庚-2-烯-4-醇 38142-57-3 − 0.058 34 D-氨基丙醇 35320-23-1 − 0.018 35 3-甲基苯乙醇 1875-89-4 − 0.024 36 1-甲基氨基丙烷-2-醇 16667-45-1 − 0.017 苯及其衍生物 37 对异丙基甲苯 99-87-6 25.514 − 38 邻异丙基甲苯 527-84-4 12.836 − 39 3,5-二甲基苯并(b)硫代苯 1964-45-0 0.018 − 40 1-异丙烯基-3-甲基苯 1124-20-5 16.316 11.591 41 1-甲氧基-4-(1-丙烯基)苯 104-46-1 0.014 − 42 5-乙基-3,5-二甲基苯 934-74-7 − 0.012 43 间异丙基甲苯 535-77-3 − 0.047 44 1,3-二甲基-2-乙基苯 2870-04-4 − 0.015 45 2-氟-3-[1-羟基-2-(甲胺基)乙基]苯酚 103439-04-9 − 0.021 酯类 46 2-甲基丁酸乙酯 7452-79-1 0.016 − 47 异戊酸甲酯 556-24-1 0.028 − 48 异戊酸乙酯 108-64-5 0.146 − 49 (E)-3,7-二甲基-2,6-辛二烯-1-醇苯甲酸酯 94-48-4 − 0.022 50 (Z)-醋酸维苯酯 29135-27-1 − 0.191 醛类 51 正己醛 66-25-1 0.384 − 52 3-甲基-2,4-二羟基苯甲醛 6248-20-0 0.388 − 53 3-甲基己醛 19269-28-4 0.278 − 54 正壬醛 124-19-6 0.162 − 氨基酸及其衍生物 55 磺基丙氨酸 498-40-8 − 0.033 56 L-半胱亚磺酸 1115-65-7 − 0.027 57 甲基牛磺酸 107-68-6 − 0.549 58 牛磺酸 107-35-7 − 0.017 酮醚类 59 2-羟基-4,6-二甲氧基苯乙酮 90-24-4 0.018 − 60 3-二十烷酮 2955-56-8 0.042 − 61 环氧乙烷 75-21-8 − 0.021 杂环类 62 顺-2-(2-戊烯基)呋喃 70424-13-4 − 0.034 63 3-对甲苯磺酰基-1,2,3,4-四氢异喹啉 20335-69-7 − 0.048 酸类 64 乙醇酸 79-14-1 0.082 − 65 2-羟基-2-[(1-氧代-2-丙烯基)氨基]乙酸 6737-24-2 − 0.014 66 (1RS)-1,8-二甲基-7-氧代-6-氧代-双环[3.2.1]oct-2-烯-8-羧酸 54345-92-5 − 0.020 其他 67 氨基脲 4426-72-6 0.198 0.032 68 N-(1-甲基-2-苯基乙基)-N-亚硝基丙氨酸腈 3422-20-6 0.052 − 69 1-壬-3-炔 57223-18-4 − 0.025 70 1-甲基-3-苯基丙胺 22374-89-6 − 0.015 71 十二烷烃-(3aR、5aR、8aR8bR)-rel-如吲哚蒽 30159-15-0 − 0.027 72 甲基丁基亞碸 2976-98-9 − 0.026 73 (E)-α-贝加莫汀 13474-59-4 − 0.049 74 2,5-二氢-5-(4-甲基苯基)-4-苯基恶唑 36879-73-9 − 0.013 75 1-乙基-2-苯肼 622-82-2 − 0.012 表 6 基于气相色谱-离子迁移谱鉴定开花蚕豆挥发性风味成分
Table 6. Identification of volatile flavor components of flowering broad beans based on GC-IMS
序号 化合物 CAS号# 分子式 保留时间(s) 迁移时间(ms) 呈香描述 共同挥发性物质29种 1 4-甲基苄醇乙酯 2216-45-7 C10H12O2 878.883 1.47548 2 甲酸香茅酯 105-85-1 C11H20O2 859.25 1.92066 水果香 3 庚酸乙酯 106-30-9 C9H18O2 521.312 1.41288 菠萝香 4 异戊酸异戊酯 659-70-1 C10H20O2 518.724 1.47003 香蕉香、甜香 5 乙酰丙酸乙酯 539-88-8 C7H12O3 434.619 1.63446 苹果香 6 乙酰乙酸乙酯 141-97-9 C6H10O3 255.347 1.57973 水果香 7 乙酸戊酯 628-63-7 C7H14O2 256.028 1.77822 香蕉香 8 异硫氰酸烯丙酯 1957-6-7 C4H5NS 241.064 1.37056 刺激性气味 9 芳樟醇(M) 78-70-6 C10H18O 519.371 1.67762 浓郁花香 10 芳樟醇(D) 78-70-6 C10H18O 513.548 1.77441 浓郁花香 11 仲辛醇 123-96-6 C8H18O 333.045 1.43854 芳香 12 反式-3-己烯-1-醇 928-97-2 C6H12O 222.699 1.26064 13 糠醇 98-00-0 C5H6O2 215.325 1.10423 特殊苦辣气味 14 丙酮醇 116-09-6 C3H6O2 145.885 1.24784 15 四氢噻吩-3-酮 1003-04-9 C4H6OS 291.64 1.17963 葱蒜、肉、蔬菜香 16 1-戊烯-3-酮 1629-58-9 C5H8O 150.077 1.09874 香辣刺激性气味 17 异亚丙基丙酮 141-79-7 C6H10O 186.239 1.12527 蜂蜜香 18 水杨醛 1990-2-8 C7H6O2 420.385 1.14698 苦杏仁气味 19 乙缩醛 105-57-7 C6H14O2 163.965 1.12344 20 异戊醛 590-86-3 C5H10O 134.093 1.19661 苹果、桃子香 21 5-甲基糠醛 620-02-0 C6H6O2 288.893 1.47356 甜香、辛香气味 22 2-乙酰基-3-甲基吡嗪 23787-80-6 C7H8N2O 479.906 1.17264 23 2,3-二甲基吡嗪 5910-89-4 C6H8N2 257.998 1.47936 焙烤、肉类香 24 2,6-二甲基吡嗪 108-50-9 C6H8N2 257.388 1.5253 咖啡和炒花生香 25 2,4,5-三甲基噻唑 13623-11-5 C6H9NS 327.87 1.14931 巧克力香 26 异戊酸(M) 503-74-2 C5H10O2 201.961 1.19661 具有难闻的气味 27 异丁酸 79-31-2 C4H8O2 180.014 1.35733 强烈刺激性气味 28 二糠基硫醚 13678-67-6 C10H10O2S 1124.284 1.80147 牛、鸡肉香 29 2-甲氧基-4-甲基苯酚 93-51-6 C8H10O2 710.374 1.19114 香辛料和烟熏香 空白组特有挥发性物质15种 30 3-羟基丁酸乙酯 5405-41-4 C6H12O3 283.426 1.64337 果香、白酒香 31 乙酸丁酯 123-86-4 C6H12O2 202.082 1.25642 水果香 32 反式-2-已烯-1-醇 2305-21-7 C6H12O 227.068 1.19981 33 正己醇 111-27-3 C6H14O 227.782 1.31091 嫩枝叶、酒香 34 乙醇中异丁醇 78-83-1 C4H10O 122.272 1.17604 酒精味 35 二异丁基酮 108-83-8 C9H18O 306.968 1.325 青香、发酵香 36 1-戊烯-3-酮 1629-58-9 C5H8O 152.006 1.33199 香辣刺激性气味 37 2-戊酮 107-87-9 C5H10O 156.562 1.37077 酒和丙酮气味 38 反-2-庚烯醛 18829-55-5 C7H12O 289.133 1.25867 39 糠醛 1998-1-1 C5H4O2 203.883 1.31754 苯甲醛的特殊味 40 正戊醛 110-62-3 C5H10O 156.801 1.17014 特殊香味 41 2-甲基吡嗪 109-08-0 C5H6N2 205.175 1.39713 熟牛肉、烧烤香 42 异戊酸(D) 503-74-2 C5H10O2 203.525 1.48667 酸败气味 43 丙酸 1979-9-4 C3H6O2 156.322 1.24938 酸败刺鼻气味 44 2,2,4,6,6-五甲基庚烷 13475-82-6 C12H26 286.279 1.36894 最优组特有挥发性物质13种 45 丙位庚内酯 105-21-5 C7H12O2 630.21 1.25863 焦糖甜味 46 丁酸丁酯 109-21-7 C8H16O2 334.986 1.33941 苹果香 47 γ-丁内酯 96-48-0 C4H6O2 270.29 1.084 48 丁酸丙酯 105-66-8 C7H14O2 243.104 1.27452 香蕉、菠萝香 49 正丁醇 71-36-3 C4H10O 136.451 1.37498 果香 50 2-己酮 591-78-6 C6H12O 182.832 1.20485 51 2-甲基四氢呋喃-3-酮 3188-00-9 C5H8O2 182.57 1.41889 甜焦糖、朗姆酒香 52 3-甲基-2-戊酮 565-61-7 C6H12O 172.089 1.17558 53 苯乙醛 122-78-1 C8H8O 418.445 1.25661 浓郁的玉簪花香 54 2-乙酰基噻唑 24295-03-2 C5H5NOS 358.277 1.11782 牛肉、爆玉米香 55 四氢噻吩 110-01-0 C4H8S 182.57 1.30272 臭味 56 1,4-二氧六环 123-91-1 C4H8O2 165.538 1.31461 清香的酯味 57 乙二醇二甲醚 110-71-4 C4H10O2 129.9 1.27528 强烈醚样气味 -
[1] LIZARAZO C I, LAMPI A M, LIU J W, et al. Nutritive quality and protein production from grain legumes in a boreal climate[J]. Journal of the Science of Food and Agriculture,2015,95:2053−2064. doi: 10.1002/jsfa.6920 [2] LONGOBARDI F, SACCO D, CASIELLO G, et al. Chemical pro-file of the carpino broad bean by conventional and innovative phys-icochemical analyses[J]. Journal of Food Quality,2015,38:273−284. doi: 10.1111/jfq.12143 [3] NEME K, BULTOSA G, BUSSA N. Nutrient and functional prop-erties of composite flours processed from pregelatinised barley, sprouted faba bean and carrot flours[J]. International Journal of Food Science and Technology,2015,50:2375−2382. doi: 10.1111/ijfs.12903 [4] MULTARI S, STEWART D, RUSSELL W R. Potential of fava bean as future protein supply to partially replace meat intake in the human diet[J]. Compr Rev Food Sci F,2015,14(5):511−522. doi: 10.1111/1541-4337.12146 [5] 申士富, 钱静, 刘廷, 等. 青海蚕豆中原花青素和左旋多巴的含量测定和品种间差异的比较[J]. 中国食物与营养,2017,23(9):36−40. [SHEN Shifu, QIAN Jing, LIU Ting, et al. Determination of oligomeric proanthocyanidins and levodopa in broad bean from Qinghai province and comparison of differences among varieties[J]. Food and Nutrition in China,2017,23(9):36−40. doi: 10.3969/j.issn.1006-9577.2017.09.009 [6] 吴海虹, 卓成龙, 江宁, 等. 正交试验优化蚕豆真空微波干燥工艺[J]. 食品科学,2013,34(14):100−103. [WU Haihong, ZHUO Chenglong, JIANG Ning, et al. Optimization of vacuum microwave drying of broad bean[J]. Food Science,2013,34(14):100−103. doi: 10.7506/spkx1002-6630-201314020 [7] TAZRART K, ZAIDI F, SALVADOR A, et al. Effect of broad bean (Vicia faba) addition on starch properties and texture of dry and fresh pasta[J]. Food Chemistry,2019,278:476−481. doi: 10.1016/j.foodchem.2018.11.036 [8] 李雪芬, 韩涛, 夏晓楠, 等. 铜螯合亲和层析分离抗氧化活性蚕豆蛋白酶解物[J]. 中国粮油学报,2017,32(1):119−124. [LI Xuefen, HAN Tao, XIA Xiaonan, et al. Separation of antioxidant hydrolysates from broad bean protein with immobilized metal affinity chromatography (IMAC)[J]. Journal of the Chinese Cereals and Oils Association,2017,32(1):119−124. doi: 10.3969/j.issn.1003-0174.2017.01.021 [9] XIE J H, DU M X, SHEN M Y, et al. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate)[J]. Food Chemistry,2019,270:243−250. doi: 10.1016/j.foodchem.2018.07.103 [10] 陈丹阳, 韩涛, 杜斌, 等. 酶解蚕豆蛋白制备降胆固醇肽及其响应面优化[J]. 中国油脂,2018,43(10):46−52. [CHEN Danyang, HAN Tao, DU Bin, et al. Optimization of preparation of hypocholesterolemic peptides from broad bean protein by enzymatic hydrolysis using response surface methodology[J]. China Oils and Fats,2018,43(10):46−52. doi: 10.3969/j.issn.1003-7969.2018.10.010 [11] 林琳, 卢跃红, 陈友霞, 等. 蚕豆多酚对过氧自由基介导的DNA损伤的保护作用[J]. 食品科学,2020,41(17):83−88. [LIN Lin, LU Yuehong, CHEN Youxia, et al. Protective effect of polyphenols from broad bean on peroxy radical-Induced DNA damage[J]. Food Science,2020,41(17):83−88. doi: 10.7506/spkx1002-6630-20190725-343 [12] 兰佳佳, 杨希娟, 王生君. 蚕豆加工利用综述[J]. 青海农林科技,2017(4):46−49. [LAN Jiajia, YANG Xijuan, WANG Shengjun. Summary of processing and utilization of faba bean[J]. Science and Technology of Qinghai Agriculture and Forestry,2017(4):46−49. doi: 10.3969/j.issn.1004-9967.2017.04.015 [13] 袁婷婷, 董坤, 郭增鹏, 等. 阿魏酸诱导蚕豆枯萎病发生及根系组织结构损伤的化感效应[J]. 植物营养与肥料学报,2020,26(5):914−923. [YUAN Tingting, DONG Kun, GUO Zengpeng, et al. Allelopathic effects of ferulic acid inducing Fusarium wilt occurrence and abnormal root tissue structure of faba bean[J]. Journal of Plant Nutrition and Fertilizers,2020,26(5):914−923. doi: 10.11674/zwyf.19388 [14] 王丽娟, 杨丽萍. 基于专利分析的油炸蚕豆休闲食品产业技术创新态势研究[J]. 中国高新科技,2020(17):36−37. [WANG Lijuan, YANG Liping. Research on technological innovation situation of fried broad bean snack food industry based on patent analysis[J]. China High and New Technology,2020(17):36−37. doi: 10.3969/j.issn.2096-4137.2020.17.010 [15] 范柳萍, 王维琴, 孙金才, 等. 预处理技术对真空油炸脆蚕豆品质的影响[J]. 食品工业科技,2008(7):108−109, 113. [FAN Liuping, WANG Weiqin, SUN Jincai, et al. Effects of pretreatment on the quality of vacuum fried horsebean[J]. Science and Technology of Food Industry,2008(7):108−109, 113. doi: 10.13386/j.issn1002-0306.2008.07.026 [16] 李焕荣, 胡瑞兰, 贾静. 蚕豆膨化休闲食品的研制[J]. 食品科学,2006,27(11):627−631. [LI Huanrong, HU Ruilan, JIA Jing. Production technology of puffed and recreation food with the broad bean[J]. Food Science,2006,27(11):627−631. doi: 10.3321/j.issn:1002-6630.2006.11.157 [17] 饶先军, 汪立成, 刘春梅, 等. 预糊化替代复合磷酸盐在油炸蚕豆中的应用[J]. 食品工业科技,2012,33(21):242−245. [RAO Xianjun, WANG Licheng, LIU Chunmei, et al. Compound phosphate replaced by pre-gelatinizing in the application of frying broad bean[J]. Science and Technology of Food Industry,2012,33(21):242−245. doi: 10.13386/j.issn1002-0306.2012.21.053 [18] 张洁, 徐桂花, 黄蓉. 酥脆蚕豆休闲食品的研制[J]. 粮食与饲料工业,2010(9):34−36. [ZHANG Jie, XU Guihua, HUANG Rong. Research and manufacture of snack food crispy broad beans[J]. Cereal & Feed Industry,2010(9):34−36. doi: 10.3969/j.issn.1003-6202.2010.09.012 [19] 郭爱平, 温利军, 吴晓伟, 等. 花生荞面豆制作工艺的研究[J]. 美食研究,2016,33(2):48−52. [GUO Aiping, WEN Lijun, WU Xiaowei, et al. Processing technology of fried fava beans coated by peanut and puckwheat paste[J]. Journal of Researches on Dietetic Science and Culture,2016,33(2):48−52. doi: 10.3969/j.issn.1009-4717.2016.02.010 [20] 刘潇潇, 张龙飞, 甘钰培, 等. 油炸花生米生产工艺及挥发性风味成分研究[J]. 食品研究与开发,2021,42(24):68−73. [LIU Xiaoxiao, ZHANG Longfei, GAN Yupei. et al. The production technology and volatile flavor components of fried peanuts[J]. Food Research and Development,2021,42(24):68−73. doi: 10.12161/j.issn.1005-6521.2021.24.010 [21] IDRUS N F M, YANG T A. Comparison between roasting by super-heated steam and by convection on changes in colour, texture and microstructure of peanut (Arachis hypogaea)[J]. Food Science and Technology Research,2012,18(4):515−524. doi: 10.3136/fstr.18.515 [22] BLANK I. Gas chromatography-olfactometry in food aroma analysis. In R. Marsili (Ed.)[M]//Techniques for Analyzing Food Aroma New York: Nestec Ltd Dekker, 1997: 293−329. [23] JELEN H H, OBUCHOWSKA M, ZAWIRSKA-WOJTASIAK R, et al. Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality[J]. Journal of Agricultural and Food Chemistry,2000,48(6):2360−2367. doi: 10.1021/jf991095v [24] 袁小钧, 钟世荣, 吴华昌, 等. 火锅常用不同品种干辣椒感官品质差异研究[J]. 中国调味品,2022,47(4):173−177. [YUAN Xiaojun, ZHONG Shirong, WU Huachang, et al. Study on sensory quality differences of different varieties of dried chilies commonly used in hot pot[J]. China Condiment,2022,47(4):173−177. doi: 10.3969/j.issn.1000-9973.2022.04.033 [25] YANG M, ZHENG C, ZHOU Q, et al. Minor components and oxidative stability of cold-pressed from rapeseed cultivars in China[J]. Journal of Food Composition and Analysis,2013,29(1):1−9. doi: 10.1016/j.jfca.2012.08.009 [26] 冷进松, 熊洋, 胡韬纲. 低温真空油炸大蒜调味配方及含油率影响研究[J]. 食品工业,2015,36(12):126−129. [LENG Jinsong, XIONG Yang, HU Taogang. Study on the fried garlic seasoning formula of low temperature vacuum and the influence of oil content[J]. The Food Industry,2015,36(12):126−129. [27] 李祥慧, 周文君, 易阳, 等. 菜籽油挥发性成分检测及高温处理前后变化分析[J]. 食品科技,2020,45(3):190−195. [LI Xianghui, ZHOU Wenjun, YI Yang, et al. Determination of volatile compounds from refined rapeseed oil and their changes before and after high temperature treatment[J]. Food Science and Technology,2020,45(3):190−195. doi: 10.13684/j.cnki.spkj.2020.03.035 [28] 鲁金花, 谢定, 鲜灵芝. 发酵型与浸泡型杨梅酒的挥发性成分分析[J]. 食品与机械,2022,38(6):34−39, 179. [LU Jinhua, XIE Ding, XIAN Lingzhi. Analysis of volatile components of fermented and soaked bayberry wine[J]. Food and Machinery,2022,38(6):34−39, 179. doi: 10.13652/j.spjx.1003.5788.2022.80027 [29] YAN W, LIU Q, WANG Y, et al. Inhibition of lipid and aroma deterioration in rice bran by infrared heating[J]. Food and Bioprocess Technology,2020,13:1677−1687. doi: 10.1007/s11947-020-02503-z [30] 廖紫玉, 魏光强, 田洋, 等. 基于HS-SPME-GC-MS分析加工方式对即食乳扇风味品质的影响[J]. 中国乳品工业,2022,50(3):14−21. [LIAO Ziyu, WEI Guangqiang, TIAN Yang, et al. Based on HS-SPME-GC-MS analysis of the effect of processing methods on the flavor quality of instant Rushan[J]. China Dairy Industry,2022,50(3):14−21. doi: 10.19827/j.issn1001-2230.2022.03.003 [31] 孟令晗, 雷思佳, 吴迪, 等. 全麦速冻油条复热加工中风味与抗氧化特性[J]. 食品科学,2022,43(4):167−174. [MENG Linghan, LEI Sijia, WU Di, et al. Flavor substances and antioxidant properties of quick-frozen pre-fried whole wheat youtiao after different reheating methods[J]. Food Science,2022,43(4):167−174. doi: 10.7506/spkx1002-6630-20210219-202 [32] ASOKAPANDIAN S, SWAMY G J, HAJJUL H. Deep fat frying of foods: A critical review on process and product parameters[J]. Crit Rev Food Sci,2020,60(20):3400−3413. doi: 10.1080/10408398.2019.1688761 [33] 陶星宇, 邓科磊, 汤尚文, 等. 烘烤温度对黑米挥发性风味物质的影响[J]. 食品科技,2022,47(8):138−145. [TAO Xingyu, DENG Keqiang, TANG Shangwen, et al. Effects of baking temperature on volatile organic compounds in black rice[J]. Food Science and Technology,2022,47(8):138−145. doi: 10.3969/j.issn.1005-9989.2022.8.spkj202208022 [34] 尹含靓, 肖何, 邓高文, 等. 基于GC-IMS技术分析不同香辛料水煮液的风味物质组成差异[J]. 食品工业科技,2021,42(17):278−284. [YIN Hanliang, XIAO He, DENG Gaowen, et al. Based on GC-IMS technology to analyze the difference in flavor composition of different spice boiling liquids[J]. Science and Technology of Food Industry,2021,42(17):278−284. doi: 10.13386/j.issn1002-0306.2020110117 [35] 袁琴琴. 气相色谱-离子迁移谱分析漂烫和银杏叶提取物对腊肉挥发性物质成分的影响[J]. 食品研究与开发,2020,41(11):165−172. [YUAN Qinqin. The aromatic constituents analysis of cantonese bacon suffer from blanching and ginkgo biloba extract by GC-IMS[J]. Food Research and Development,2020,41(11):165−172. doi: 10.12161/j.issn.1005-6521.2020.11.028 [36] 姚文生, 蔡莹暄, 刘登勇, 等. 不同材料熏制鸡腿肉挥发性物质GC-IMS指纹图谱分析[J]. 食品科学技术学报,2019,37(6):37−45. [YAO Wensheng, CAI Yingxuan, LIU Dengyong, et al. Volatile compounds analysis in chicken thigh smoked with different materials by GC-IMS fingerprint[J]. Journal of Food Science and Technology,2019,37(6):37−45. doi: 10.3969/j.issn.2095-6002.2019.06.006 [37] 张敬文, 潘磊庆, 屠康. 基于E-nose、HS-SPME-GC-MS和GC-IMS检测三种草莓鲜榨汁的香气[J]. 食品工业科技,2023,44(3):286−296. [ZHANG Jingwen, PAN Leiqing, TU Kang. Aroma determination of three freshly squeezed strawberry juice based on E-nose, HS-SPME-GC-MS and GC-IMS[J]. Science and Technology of Food Industry,2023,44(3):286−296. doi: 10.13386/j.issn1002-0306.2022040207 [38] 卢延想, 梁慧珍, 陈鹏, 等. 高温大曲中产香酵母的筛选及特征香气分析[J]. 食品研究与开发,2021,42(11):167−174. [LU Yanxiang, LIANG Huizhen, CHEN Peng, et al. Screening and characteristic aroma analysis of aroma-producing yeasts in high-temperature Daqu[J]. Food Research and Development,2021,42(11):167−174. doi: 10.12161/j.issn.1005-6521.2021.11.027 [39] 詹展. 再生稻稻米品质研究[D]. 武汉: 武汉轻工大学, 2021.ZHAN Zhan. Study on rice quality of ratoon crop rice[D]. Wuhan: Wuhan Polytechnic University, 2021. -