Quality Evaluation of Different Varieties of Fresh-edible Waxy Corns Based on Entropy Weight Method and Grey Interconnect Degree Analysis
-
摘要: 为了研究不同品种鲜食糯玉米的品质特性,对17个不同品种鲜食糯玉米籽粒中的8个内在品质指标(水分、总淀粉、直链淀粉、支链淀粉、总糖、膳食纤维、粗蛋白、粗脂肪)含量和5项主要质构指标(硬度、弹性、内聚性、胶着性、咀嚼性)参数进行测定。通过相关性分析和主成分分析筛选出核心评价指标,在此基础上运用熵权法赋予各指标权重,最后采用灰色关联度法对鲜食糯玉米品质进行综合评价。结果显示,不同鲜食糯玉米品质存在一定差异性,质构指标与内在品质指标中的直链淀粉/支链淀粉含量均呈现较好的相关性;利用主成分分析筛选出4个核心评价指标,分别是支链淀粉含量、总糖含量、水分含量和粗脂肪含量。通过熵权法得到各核心指标的权重,其中支链淀粉含量的权重值最大。灰色关联度分析得出,综合品质较好的品种为万糯2000、苏科糯1702和苏科糯1505。此结果将为鲜食糯玉品质综合评价和品种筛选提供理论支持。Abstract: The quality characteristics of 17 fresh eating waxy corn varieties were studied based on their quality and structure characteristics. The former included the content of moisture, starch, amylose and amylopectin, total sugar, dietary fiber, crude protein and crude fat, while the latter included the value of hardness, elasticity, cohesion, adhesiveness and chewiness. In order to screen out the core evaluation index, correlation analysis and principal component analysis were applied in this process. The entropy weight method was to assign weight to each index. And the grey correlation degree method was to comprehensively evaluate the quality. The results showed that there were differences in quality of different fresh-edible waxy corns. The texture properties had a good correlation with amylose and amylopectin. Four core evaluation indicators of fresh waxy corn were determined by principal component analysis; amylopectin, total sugar, moisture and crude fat. The weight value of amylopectin was the highest by the entropy method. The varieties with better comprehensive quality were ‘Wannuo2000’, ‘Sukenuo1702’ and ‘Sukenuo1505’ with the grey correlation analysis. The results would provide theoretical support for the evaluation of comprehensive quality and screening of fresh waxy corn variety.
-
表 1 鲜食糯玉米品种信息
Table 1. Information of different kinds of fresh-edible waxy corn
编号 品种名称 类型 颜色 1 苏玉糯5号 糯 白 2 苏科糯8号 甜糯 白 3 苏科糯9号 糯 白 4 苏科糯10号 糯 红花 5 苏科糯11 糯 白 6 苏科糯12 糯 红花 7 明玉1203 甜糯 白 8 苏科糯1501 糯 红花 9 苏科糯1505 甜糯 黑 10 苏科糯1601 糯 白 11 苏科糯1602 糯 红花 12 苏科糯1701 糯 红花 13 苏科糯1702 甜糯 白 14 苏科糯1704 糯 白 15 苏科糯1705 糯 红 16 万糯2000 糯 白 17 苏科花糯2008 糯 紫花 表 2 鲜食糯玉米品质指标
Table 2. Analysis of nutritional components of different kinds of fresh-edible waxy corn
品种名称 水分含量(%) 淀粉 膳食纤维
(g/100 g)总糖
(g/100 g)粗蛋白
(g/100 g)粗脂肪
(g/100 g)硬度
(g)弹性 内聚性 胶着性
(g·s)咀嚼性
(g)总淀粉
(g/100 g)直链淀粉
含量(%)支链淀粉
含量(%)苏玉糯5号 53.36±0.51a 33.92±4.92a 4.14 95.86 15.72±0.63c 8.55±0.36a 6.73±0.38b 5.22±0.17l 2166.54±2166.54h 1.11±0.05a 0.22±0.06bc 353.19±63.26e 4.67±0.49g 苏科糯8号 61.33±1.85def 43.69±1.61e 3.93 96.07 15.36±0.45b 13.26±0.17m 7.97±0.76h 5.02±0.09k 1974.66±99.36f 1.14±0.49a 0.19±0.06abc 392.92±80.31g 4.25±0.93e 苏科糯9号 62.73±0.77ef 44.97±1.75g 4.81 95.19 17.58±0.52fg 11.75±0.38h 7.45±0.53cd 4.65±0.12j 2606.37±473.61l 1.04±0.17a 0.23±0.05bc 316.76±40.16bc 6.07±0.31j 苏科糯10号 55.11±0.74ab 47.22±1.73i 4.86 95.14 16.60±0.82d 9.77±0.77d 9.21±0.72l 4.67±0.14j 2629.33±398.92m 1.02±0.23a 0.24±0.04bc 305.43±32.42b 6.14±0.75j 苏科糯11 60.37±1.66cde 48.02±2.29j 3.28 96.72 18.24±0.51hi 9.55±0.13c 7.85±0.67fg 4.34±0.11g 1614.00±188.55c 1.20±0.02a 0.17±0.03ab 486.37±26.58j 3.61±0.72bc 苏科糯12 60.11±1.74cde 45.73±1.59h 4.93 95.07 17.34±0.64ef 11.90±0.12i 8.13±0.92ij 3.96±0.08d 2819.19±170.29n 0.97±0.06a 0.27±0.02c 241.68±14.50a 6.17±0.35j 明玉1203 58.33±0.34bcd 52.52±4.51l 4.76 95.24 15.38±0.32b 13.84±0.66n 7.89±0.41gh 3.92±0.07c 2411.33±545.75k 1.06±0.14a 0.23±0.02bc 331.27±46.23d 5.26±0.51i 苏科糯1501 55.92±2.25ab 55.45±1.91m 3.76 96.24 14.82±0.39a 12.71±0.13k 8.03±0.66hi 3.92±0.16c 1826.06±357.41e 1.16±0.20a 0.19±0.06abc 402.35±60.85h 4.18±0.51e 苏科糯1505 63.73±2.55efg 47.14±3.26i 2.44 97.56 18.69±0.52i 14.27±0.38o 12.73±0.82n 3.11±0.13a 1478.57±237.74a 1.22±0.10a 0.14±0.04bc 551.64±58.18k 3.56±0.61b 苏科糯1601 63.05±2.22efg 41.28±4.06c 3.57 96.43 15.83±0.46c 10.22±0.19f 7.69±0.71ef 4.12±0.08e 1635.45±175.38c 1.19±0.07a 0.18±0.07ab 413.05±24.58i 3.74±0.50c 苏科糯1602 57.14±1.73bc 49.46±2.32k 2.50 97.50 14.86±0.43a 8.99±0.24b 8.23±0.59j 4.12±0.13e 1517.08±125.08b 1.21±0.06a 0.17±0.01ab 549.16±82.37k 3.60±0.44b 苏科糯1701 58.58±0.33bcd 39.34±3.55b 4.31 95.69 17.22±0.59ef 10.02±0.13e 9.05±0.83k 4.16±0.14f 2194.00±348.26i 1.10±0.17a 0.23±0.10bc 350.10±29.82e 4.85±0.65h 苏科糯1702 64.44±0.61fg 55.83±3.41m 4.68 95.32 20.01±0.45j 14.46±0.35p 7.53±0.61de 4.35±0.15i 2283.21±346.54j 1.09±0.1a 0.23±0.05bc 331.40±46.52d 5.14±0.57i 苏科糯1704 58.61±0.93bcd 49.83±1.60k 3.74 96.26 17.28±0.26de 12.33±0.34j 6.17±0.43a 4.38±0.06h 1733.35±131.34d 1.18±0.13a 0.18±0.04ab 403.70±30.68hi 3.94±1.47d 苏科糯1705 55.93±0.55ab 42.35±1.73d 4.06 95.94 18.53±0.67i 9.58±0.24c 7.36±0.59c 3.96±0.12d 2037.63±92.52g 1.12±0.10a 0.22±0.04bc 369.35±28.87f 4.58±0.60g 万糯2000 66.21±0.33g 44.41±2.93f 3.94 96.06 15.97±0.56c 13.04±0.34l 6.65±0.54b 5.28±0.17m 2028.67±129.41g 1.13±0.02a 0.21±0.09bc 380.71±81.38g 4.40±1.14f 苏科花糯2008 61.47±1.07def 52.72±2.22l 2.24 97.76 17.80±0.48gh 11.49±0.21g 9.85±0.73m 3.84±0.10b 1472.67±79.08a 1.22±0.06a 0.11±0.02a 567.65±79.90l 3.43±0.67a 注:结果被表示为平均值±标准差;同列均值有不同上标字母者表示差异显著(P<0.05);水分含量%为占鲜重百分比,直/支链淀粉含量%为占总淀粉的百分比。 表 3 营养品质、质构特性各因素间皮尔森相关系数
Table 3. Pearson correlation coefficient among nutritional quality and texture characteristics
指标 水分 总淀粉 直链淀粉 支链淀粉 膳食纤维 总糖 粗蛋白 粗脂肪 硬度 弹性 内聚性 胶着性 咀嚼性 水分 1 总淀粉 0.194 1 直链淀粉 −0.140 −0.153 1 支链淀粉 0.144 0.155 −0.989** 1 膳食纤维 0.307* 0.166 0.123 −0.118 1 总糖 0.601* 0.556** 0.101 −0.094 0.13 1 粗蛋白 0.153 0.161 −0.461* 0.471** 0.086 0.209 1 粗脂肪 −0.370 −0.417** −0.403** −0.390** −0.190 −0.207 −0.664** 1 硬度 −0.145 −0.149 0.927** −0.927** 0.117 0.069 −0.275 0.316* 1 弹性 0.125 0.109 −0.674** 0.711-** 0.700 −0.035 0.203 −0.204 −0.766** 1 内聚性 −0.205 −0.241 0.925** −0.921** −0.780 −0.030 −0.424** 0.352** 0.899** −0.671** 1 胶着性 0.156 0.228 −0.977* 0.978** −0.085 −0.067 0.479** −0.392** −0.924** 0.707** −0.930** 1 咀嚼性 −0.146 −0.096 0.896** −0.888** 0.148 0.060 −0.197 0.261 0.984** −0.738** 0.870** −0.881** 1 注:*表示在P<0.05水平显著相关,**表示在P<0.01水平显著相关。 表 4 主成分的特征值、贡献率和权重
Table 4. Characteristic values, contributions and weight coefficient of principal components
主成分 特征值 贡献率(%) 累计贡献率(%) PC1 7.039 54.143 54.143 PC2 2.337 17.975 72.118 PC3 1.296 9.972 82.090 表 5 主成分分析因子载荷矩阵
Table 5. Component load matrix after principal component analysis
指标 PC1 PC2 PC3 水分 −0.203 0.595 0.563 总淀粉 −0.240 0.623 0.124 直链淀粉 −0.880 0.097 0.051 支链淀粉 0.980 −0.097 −0.051 膳食纤维 −0.034 0.588 −0.170 总糖 −0.010 0.804 0.414 粗蛋白 −0.466 0.458 −0.576 粗脂肪 0.456 −0.523 0.584 硬度 0.963 0.162 −0.125 弹性 −0.952 −0.168 0.168 内聚性 0.966 0.001 −0.075 胶着性 −0.780 −0.050 −0.035 咀嚼性 0.931 0.207 −0.188 表 6 指标的信息熵、效用值、指标权重
Table 6. Information entropy, utility value and index weight of indicators
指标 信息熵 效用值 指标权重 支链淀粉 0.8785 0.1215 0.3907 总糖 0.9170 0.0830 0.2670 水分 0.9369 0.0631 0.2028 粗脂肪 0.9566 0.0433 0.1395 表 7 指标的灰色关联度系数
Table 7. Grey correlation coefficient of indexes
品种 支链淀粉 总糖 水分 粗脂肪 苏玉糯5号 0.9686 0.5950 0.7557 0.9814 苏科糯8号 0.9720 0.8786 0.8907 0.9242 苏科糯9号 0.9581 0.7621 0.9195 0.8234 苏科糯10号 0.9573 0.6493 0.7817 0.8387 苏科糯11 0.9826 0.6388 0.8719 0.7713 苏科糯12 0.9562 0.7723 0.8670 0.7061 明玉1203 0.9588 0.9334 0.8346 0.6998 苏科糯1501 0.9748 0.8323 0.7944 0.6998 苏科糯1505 0.9966 0.9786 0.9413 0.5937 苏科糯1601 0.9778 0.6719 0.9264 0.7321 苏科糯1602 0.9956 0.6135 0.8143 0.7321 苏科糯1701 0.9659 0.6617 0.8390 0.7390 苏科糯1702 0.9601 1.0000 0.9574 0.7732 苏科糯1704 0.9751 0.8030 0.8395 0.7789 苏科糯1705 0.9699 0.6402 0.7946 0.7061 万糯2000 0.9719 0.8595 1.0000 1.0000 苏科花糯2008 1.0000 0.7451 0.8935 0.6877 表 8 不同品种糯玉米的加权关联度及综合排名
Table 8. Weighted correlation degree and comprehensive ranking of different kinds of fresh-edible waxy corn
品种 类型 加权关联度 综合排名 苏玉糯5号 糯 0.8275 13 苏科糯8号 甜糯 0.9239 4 苏科糯9号 糯 0.8792 6 苏科糯10号 糯 0.8229 15 苏科糯11 糯 0.8389 12 苏科糯12 糯 0.8541 10 明玉1203 甜糯 0.8907 5 苏科糯1501 糯 0.8618 9 苏科糯1505 甜糯 0.9244 3 苏科糯1601 糯 0.8515 11 苏科糯1602 糯 0.8201 16 苏科糯1701 糯 0.8273 14 苏科糯1702 甜糯 0.9441 2 苏科糯1704 糯 0.8743 7 苏科糯1705 糯 0.8095 17 万糯2000 糯 0.9515 1 苏科花糯2008 糯 0.8668 8 -
[1] 姚坚强, 鲍坚东, 朱金庆, 等. 中国糯玉米wx基因种质资源遗传多样性[J]. 作物学报,2013,39(1):43−49. [2] Fedoroff N V, Wessler S R, Shure M, et al. Isolation of the transposable maize controlling elements Ac and Ds[J]. Cell,1983,35:235−242. [3] 李兰青, 时成俏, 邓鹏, 等. 糯玉米品种玉农科糯1号的选育及栽培技术[J]. 中国种业,2020(9):74−75. doi: 10.3969/j.issn.1671-895X.2020.09.024 [4] 杨书超. SSR标记对糯玉米自交系群体划分与杂种优势的分析[D]. 吉林: 吉林农业大学, 2012. [5] 陆大雷, 孙世贤, 陈国清, 等. 国家鲜食糯玉米区域试验品种产量和品质性状分析[J]. 玉米科学,2016,24(3):62−68, 77. [6] 史振声, 钟雪梅. 鲜食玉米新品种选育原理与技术技巧[J]. 玉米科学,2016,24(2):1−5. [7] 陈闯, 许立娜, 蔚荣海. 30份糯玉米杂交组合主要品质性状综合评价[J]. 分子植物育种,2018,16(13):4460−4465. [8] 张振良, 陆虎华, 黄小兰, 等. 江苏省糯玉米育种研究进展及产业发展趋势[J]. 金陵科技学院学报,2020,36(2):65−69. [9] 李跃红, 冉茂乾, 徐孟怀, 等. 不同品种猕猴桃果实品质比较与综合评价[J/OL]. 食品与发酵工业: 1−7[2020-07-28]. https://doi.org/10.13995/j.cnki.11-1802/ts.024429. [10] 张迟, 黄戎婕, 曾金祥, 等. 不同产地桔梗HPLC指纹图谱及化学模式识别研究[J/OL]. 天然产物研究与开发: 1−21[2020-08-24]. http://kns.cnki.net/kcms/detail/51.1335.Q.20200709.1537.010.html. [11] 公丽艳, 孟宪军, 刘乃侨, 等. 基于主成分与聚类分析的苹果加工品质评价[J]. 农业工程学报,2014,30(13):276−285. doi: 10.3969/j.issn.1002-6819.2014.13.034 [12] Zou J Q, Li P F. Modelling of litchi shelf life based on the entropy weight method[J]. Food Packaging and Shelf Life,2020,25:100509. doi: 10.1016/j.fpsl.2020.100509 [13] 李慧峰, 卢森权, 李彦青, 等. 灰色关联度分析在食饲兼用型甘薯新品种评价中的应用[J]. 广西农业科学,2009,40(10):1300−1304. [14] 李迪秦, 刘伊芸, 胡亚杰, 等. 不同基因型烤烟农艺性状与质量指标评价及灰色关联分析[J]. 云南农业大学学报(自然科学),2020,35(04):643−650. [15] 杨丽娟, 付亮, 蒋志凯, 等. 2016-2018年度国家区试小麦品种品质性状灰色关联度分析与评价[J]. 中国农学通报,2020,36(19):135−140. [16] 魏常敏, 周文伟, 许卫猛, 等. 基于主成分和灰色关联度分析的鲜食糯玉米组合综合评价[J]. 贵州农业科学,2020,48(7):9−13. doi: 10.3969/j.issn.1001-3601.2020.07.003 [17] 郭金龙, 陈有君, 孙国琴, 等. 苯酚-硫酸法测定杏鲍菇多糖方法的研究[J]. 食品科学,2008,29(12):555−558. doi: 10.3321/j.issn:1002-6630.2008.12.129 [18] 牛丽影, 沈凌雁, 刘春菊, 等. 鲜食玉米质构特性分析[J]. 食品研究与开发,2020,41(12):48−53. doi: 10.12161/j.issn.1005-6521.2020.12.009 [19] 马宁, 刘艳霞, 李想, 等. 基于熵权法综合评价不同PGPR菌株对烟草的促生作用[J/OL]. 南京农业大学学报: 1−10[2020-08-24]. http://kns.cnki.net/kcms/detail/32.1148.S.20200807.0901.004.html. [20] 张艳艳. 基于熵权与灰色关联融合分析的模拟电路故障诊断研究[D]. 北京: 北京交通大学, 2019. [21] 邓健康, 刘璇, 吴昕烨, 等. 基于层次分析和灰色关联度法的苹果(等外果)汁品质评价[J]. 中国食品学报,2017,17(4):197−208. [22] 高伦江, 赵国华, 赵小皖, 等. 采收期对渝糯系列鲜食糯玉米品质的影响研究[J]. 食品工业科技,2015,36(8):148−151. [23] Klaochanpong N, Puttanlek C, Rungsardthong V, et al. Physicochemical and structural properties of debranched waxy rice, waxy corn and waxy potato starches[J]. Food Hydrocolloids,2015,45:218−226. doi: 10.1016/j.foodhyd.2014.11.010 [24] 宋雪皎, 马兴林, 关义新, 等. 影响糯玉米鲜食品质因素的研究[J]. 玉米科学,2005(1):115−118. doi: 10.3969/j.issn.1005-0906.2005.01.035 [25] 林丹琼. 不同方法提取的芝麻分离蛋白对面包品质比较[J]. 现代食品科技,2020,36(5):261−266. [26] Brownlee I. The impact of dietary fibre intake on the physiology and health of the stomach and upper gastrointestinal tract[J]. Bioactive Carbohydrates and Dirtaey Fibre,2014,4:155−169. doi: 10.1016/j.bcdf.2014.09.005 [27] 史振声, 李昆, 朱敏. 鲜食糯玉米的果皮性状研究[J]. 玉米科学,2014,22(5):47−51. doi: 10.3969/j.issn.1005-0906.2014.05.009 [28] Jiang S L, Wu J G, Feng Y, et al. Correlation analysis of mineral element contents and quality traits in milled rice[J]. Journal of Agricultural and Food Chemistry,2007,55(23):9608−9613. doi: 10.1021/jf071785w [29] 陆大雷, 王鑫, 闫发宝, 等. 鲜食糯玉米籽粒物性差异与主成分分析[J]. 食品科学,2013,34(21):16−19. [30] 许金芳, 贾世锋, 刘志先, 等. 糯玉米杂交种选育和加工利用的研究[J]. 玉米科学,1993(4):8−10. [31] 许永亮, 程科, 赵思明, 等. 大米淀粉的分子量分布及其与粘性的相关性研究[J]. 中国农业科学,2007,40(10):566−572. [32] 卢毅, 路兴花, 张青峰, 等. 稻米直链淀粉与米饭物性及食味品质的关联特征研究[J]. 食品科技,2018,43(10):219−223. [33] Dunja Šamec, Marina Maretić, Ivana Lugarić, et al. Assessment of the differences in the physical, chemical and phytochemical properties of four strawberry cultivars using principal component analysis[J]. Food Chemistry,2016,194:828−834. doi: 10.1016/j.foodchem.2015.08.095 [34] Rodriguez-Delgado M A, Gonzalez-Hernandez G, Conde-Gonzalez J E. Principal component analysis of the polyphenol content in young red wines[J]. Food Chemistry,2002,78(4):523−532. doi: 10.1016/S0308-8146(02)00206-6 [35] Shin E C, Craft B D, Pegg R B, et al. Chemometric approach to fatty acid profiles in Runner-type peanut cultivars by principal component analysis (PCA)[J]. Food Chemistry,2010,119(3):1262−1270. doi: 10.1016/j.foodchem.2009.07.058 [36] Kara D. Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis[J]. Food Chemistry,2009,114(1):347−354. doi: 10.1016/j.foodchem.2008.09.054 [37] 周国燕, 胡琦玮, 李红卫, 等. 水分含量对淀粉糊化和老化特性影响的差示扫描量热法研究[J]. 食品科学,2009,30(19):89−92. doi: 10.3321/j.issn:1002-6630.2009.19.018 [38] Sutadian A D, Muttil N, Yilmaz A G, et al. Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index-ScienceDirect[J]. Ecological Indicators,2017,75:220−233. doi: 10.1016/j.ecolind.2016.12.043 [39] Strand J, Carson R T, Navrud S, et al. Using the Delphi method to value protection of the Amazon rainforest[J]. Ecological Economics,2017,131:475−484. doi: 10.1016/j.ecolecon.2016.09.028 [40] Cui X, Wu X, He X, et al. Regional suitability of virtual water strategy: Evaluating with an integrated water-ecosystem-economy index[J]. Journal of Cleaner Production,2018,199:659−667. doi: 10.1016/j.jclepro.2018.07.192 [41] Cheng W J, Xi H Y, Sindikubwabo C, et al. Ecosystem health assessment of desert nature reserve with entropy weight and fuzzy mathematics methods: A case study of Badain Jaran Desert[J]. Ecological Indicators,2020,119:106843. doi: 10.1016/j.ecolind.2020.106843 [42] Huang L, Hou J J, Liu Y, et al. Algorithm of selecting optimal test point for analog circuit based on grey relational entropy[J]. Journal of Electronic Measurement and Instrument,2009,2009(9):27−32. doi: 10.3724/SP.J.1187.2009.09027 [43] Wang X N, Yang W C, Ge Y, et al. The influence of shrinkage-reducing agent solution properties on shrinkage of cementitious composite using grey correlation analysis[J]. Construction and Building Materials,2020,264:120194. doi: 10.1016/j.conbuildmat.2020.120194 [44] Wu G D, Duan K F, Zou J, et al. Integrated sustainability assessment of public rental housing community based on a hybrid method of AHP-entropy weight and cloud model[J]. Sustainability,2017,9(4):603. doi: 10.3390/su9040603 [45] Xia X F, Sun Y, Wu K, et al. Optimization of a straw ring-die briquetting process combined analytic hierarchy process and grey correlation analysis method[J]. Fuel Processing Technology,2016,152:303−309. doi: 10.1016/j.fuproc.2016.06.018 -