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EGCG和异鼠李素的细胞抗氧化协同作用
潘俊坤，焦中高，张　强*

（中国农业科学院郑州果树研究所，河南郑州 450009）

摘　要：目的：探究不同比例的食源性类黄酮表没食子儿茶素没食子酸酯（epigallocatechin gallate，EGCG）和异鼠

李素（isorhamnetin）细胞抗氧化协同效应，为食源性类黄酮功能性食品的开发提供理论依据。方法：采用 Chou-
Talalay联合指数法（Combination Index，CI）评价不同比例 EGCG和异鼠李素组合对细胞抗氧化活性的影响。结

果：EGCG和异鼠李素（6:4，c/c）联合作用时，EC50 值为 5.01±0.1 μg/mL，联合作用指数 CIavg 值为 0.76，表现

出较强的协同作用。进一步细胞抗氧化酶实验发现，在 EGCG+异鼠李素（1.5+1、3+2和 6+4 μg/mL）浓度梯度

下，超氧化物歧化酶（Superoxide dismutase，SOD）活性相较于 2,2'-偶氮二异丁基脒二盐酸盐 [2,2-Azobis（2-
amidinopropane）dihydrochloride solution，AAPH]处理组分别提高了 5.2%、21.1%和 49.1%；谷胱甘肽过氧化物酶

（Glutathione peroxidase，GSH-Px）活性分别提高了 7.6%、27.8%和 57.6%；过氧化氢酶（Catalase，CAT）活性

分别提高了 5.6%、24.6%和 42.1%。结论：EGCG和异鼠李素组合细胞抗氧化的机制可能是通过上调内源性抗氧

化酶的活性来提高细胞自身抗氧化能力，从而达到平衡机体氧化应激反应的效果。

关键词：EGCG，异鼠李素，细胞抗氧化，协同作用，抗氧化酶
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Synergistic Effect of EGCG and Isorhamnetin on Cellular
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（Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China）

Abstract：Objective: To investigate the synergistic antioxidant effects of different ratios of EGCG (epigallocatechin gallate)
and  isorhamnetin  combinations,  and  provide  a  theoretical  basis  for  the  development  of  food  borne  flavonoid  functional
foods.  Methods:  The  cellular  antioxidant  activities  (CAA)  of  EGCG  and  isorhamnetiin  combinations  were  estimated  by
Chou-Talalay  combination  Index  (CI)  method.  Results:  The  median  effective  dose  (EC50)  of  EGCG  and  isorhamnetin
combination (6:4, c/c) was 5.01±0.1 μg/mL with the CIavg value of 0.76, which represented significantly synergistic effects.
Further  experiments  proved  that  the  superoxide  dismutase  (SOD)  activities  of  EGCG+isorhamnetin  (1.5+1,  3+2,  and  6+
4 μg/mL) were increased by 5.2%, 21.1% and 49.1%. Glutathione peroxidase (GSH-Px) activities were increased by 7.6%,
27.8%  and  57.6%,  and  catalase  (CAT)  activities  were  increased  by  5.6%,  24.6%  and  42.1%  of  AAPH  group  value,
respectively. Conclusion: The mechanism of the combination of EGCG and isorhamnetin in cell antioxidant activity might
be  through  up-regulating  the  activity  of  endogenous  antioxidant  enzymes  to  enhance  the  cell's  own antioxidant  capacity,
thereby achieving a balance in the body's oxidative stress response.
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表没食子儿茶素没食子酸酯（epigallocatechin
gallate，EGCG）广泛存在于茶叶中，是一种儿茶素类

物质，占茶多酚含量的 30%~50%[1]。EGCG结构富

含多个羟基基团，具有良好的抗氧化、抗癌、抗炎、

降血糖等功能活性[2−4]。异鼠李素（isorhamnetin）广
泛存在于银杏、沙棘等植物中，是一种黄酮醇类化合

物[5−6]。异鼠李素结构也富含多个羟基基团，具有抗

炎、抗氧化、抗癌、降血脂等生物活性[7−10]。

在探寻天然高效抗氧化活性资源的过程中，单

一活性成分的抗氧化活性研究备受关注，而复配组分

研究尚有不足。有研究发现，单一天然活性成分的抗

氧化效果有弱于复配组分的现象发生[11−13]。王娜

等[14] 利用中效定理分析发现，白藜芦醇与维生素

E在体积比为 1:1~7:1之间具有良好的协同效果

（联合作用指数（Combination Idex，CI）<0.95），且当

体积比为 3:1时，CI值最小，其清除 DPPH·的半抑

制浓度 IC50 值为 0.011  mg/mL，因此当体积比为

3:1时该复配组分具有最佳的协同抗氧化作用。

近年来，已有报道化合物组合对细胞模型相关

活性影响的研究。Liu等[15] 研究槲皮素（5 μmol/L）
和 EGCG（5 μmol/L）联合处理对 HepG2细胞胰岛素

抵抗模型糖代谢的影响，首次报道 miR-27a-3p和

miR-96-5p通过抑制 FOXO1表达参与槲皮素和

EGCG联合作用棕榈酸诱导的胰岛素抵抗的协同保

护作用。Pan等[16] 研究酚酸和胡萝卜素对 H2O2 诱

导的 H9c2细胞的协同抗氧化作用发现，酚酸增加了

细胞对胡萝卜素的摄取及其膜转运蛋白的表达。酚

酸含量较高的组合具有协同作用，其中 β-胡萝卜素:咖

啡酸=1:2时，显著抑制了细胞内 ROS，Synergistic rate
（SR）>1表现出协同作用，并增加了细胞核 Nrf2的

表达。关惠[17] 的研究发现槲皮素和儿茶素（12.5+
12.5 μmol/L）通过靶向 FOXO3 协同抑制 CHUK 基

因转录增强细胞抗氧化应激的分子机制可能是：槲皮

素和儿茶素通过共同作用于 CHUK 转录因子 FOXO3
的 DNA结合域，干扰靶基因 DNA的结合，并破坏

蛋白-DNA复合物的稳定性，进而协同抑制 FOXO3
与 CHUK 启动子序列的结合，抑制 CHUK 的转录表

达，影响 CHUK 下游基因表达，从而协同增强细胞抗

氧化应激作用。因此研究具有协同增效的细胞抗氧

化活性植物天然成分，为食源性类黄酮功能性食品的

开发提供理论依据。

本研究通过 2,2'-偶氮二异丁基脒二盐酸盐 [2,2-
Azobis （2-amidinopropane） dihydrochloride solution，
AAPH]诱导构建了 HepG2细胞抗氧化模型，设置

EGCG和异鼠李素组合质量浓度比为 7:4、6:4和

6:5，通过此模型验证了不同比例 EGCG和异鼠李素

组合对 HepG2细胞抗氧化作用，采用 Chou-Talalay
中效分析法评价不同比例的 EGCG和异鼠李素细胞

抗氧化协同效应，并进一步探究联合指数（Com-
binaion Index，CI）最优组合对 HepG2细胞内抗氧化

相关酶的影响。研究结果为揭示 EGCG和异鼠李素

抗氧化应激的协同增效机制提供了理论依据，同时为

明确膳食中抗氧化成分的生物学功能提供了理论

参考。 

1　材料与方法 

1.1　材料与仪器

EGCG标准品（98%）、异鼠李素标准品（98%）、

最小必需培养基（Minimum Essential Medium，MEM）、

PBS缓冲液（phosphate buffer solution）、胰蛋白酶、

CCK-8试剂盒　北京索莱宝科技有限公司；2,2'-偶
氮二异丁基脒二盐酸盐 [2,2-Azobis （2-amidinopro-
pane） dihydrochloride solution，AAPH]、2',7'-二氯荧

光 素 二 乙 酸 酯 （ 2',7'-Dichlorfluorescin  diacetate，
DCFH-DA）、胎牛血清（Fetal bovine serum，FBS）　
Gibco公司；Western、 IP裂解液、苯甲基磺酰氟

（PMSF）、BCA蛋白浓度测定试剂盒　碧云天科技

公司；总超氧化物歧化酶（SOD）活性检测试剂盒、过

氧化氢酶（CAT）检测试剂盒、总谷胱甘肽过氧化物

酶（GSH-Px）检测试剂盒　南京建成生物工程研究所；

HepG2细胞　中科院昆明动物所。

CO2 培养箱　Thermo Fisher公司；SpectraMax
i3X酶标仪　Molecular  Devices公司；XDS-1系列

倒置生物显微镜　重庆重光实业有限公司；SW-CJ-
2FD超净工作台　苏州净化设备有限公司；Centri-
fuge 5427R离心机　德国 Eppendorf公司；−80 ℃
冰箱　青岛海尔特种电冰柜有限公司；LDZX-50KBS
立式压力蒸汽灭菌锅　上海申安医疗器械厂；GL224i-
1SCN分析天平　赛多利斯科学仪器（北京）有限

公司。 

1.2　实验方法 

1.2.1   联合指数法　采用 CompuSyn分析软件计算

EGCG和异鼠李素组合细胞抗氧化活性的联合指数

CI[18]。联合指数公式为：CI=（D）1/（DX）1+（D）2/（DX）2，

其中（D）1、（D）2 分别为复配处理时，活性达到 x%，

两种植物化学各自浓度，DX为单一物质活性达到

x%所需的物质浓度[19]。当 CI<1时，表示协同作用；

CI=1时，表示相加作用；CI>1时，表示拮抗作用。 

1.2.2   细胞培养　HepG2细胞为贴壁细胞生长，该

细胞培养在 10%胎牛血清、1%双抗（100×）的MEM
培养基中，在 37 ℃、5% CO2、95%湿度培养箱中孵

育，每 1~2 d更换培养基。当细胞在培养瓶中生长到

80%~90%后，移除培养基，常温下 PBS清洗 1~2次，

加入 1~2 mL含 EDTA的胰蛋白酶消化液于 25 cm2

培养瓶中，消化 2~3 min，待细胞消化完成后加入 2 mL
完全培养基，1000 r/min下离心 5 min，弃去上清液后

用完全培养基重悬细胞，按照后续实验需要的细胞数

量进行传代。 

1.2.3   细胞毒性实验　采用 CCK-8法检测细胞毒性

活性，参照 Liang等[18] 方法，将密度为 5.0×104 个/孔
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的 HepG2细胞接种于 96孔板各孔中，每孔接种

100 μL，每组设置 6个重复，培养 24 h。实验组每孔

加入 100 μL MEM培养基（包含不同浓度比的 EGCG+
异鼠李素组合，EGCG或异鼠李素），并设置 6个重

复，正常对照组加入相同体积的完全培养基，继续培

养 24 h后，每孔加入 10 μL的 CCK-8溶液培养 1~
2 h后，96孔板放于酶标仪 450 nm处测定 OD值，

计算细胞存活率。 

1.2.4   细胞抗氧化实验（CAA）　参照 Tu等[20] 方法

取对数生长期的HepG2细胞，在 96孔板中加入 100 μL
培养基其细胞密度达到 5×104 个/孔；培养 24 h后除

去培养基，并用 PBS清洗 1~2次；分别加入包含

EGCG、异鼠李素，不同质量浓度比的 EGCG+异鼠

李素组合的 DCFH-DA探针培养基，其中 DCFH-DA
探针终浓度为 25 μmol/mL，继续孵育 1 h；1 h后，去

除培养基，每孔加入 100 μL的 PBS清洗 3次；然后

加入 100 μL的浓度为 600 μmol/mL的 AAPH（Hanks
溶液稀释），将 96孔板放入多功能酶标仪检测，恒温

37 ℃。酶标仪测定条件为：激发波长 485 nm，发射

波长 538 nm，振荡 5 s，然后每 5 min测定一次，测

定 60 min。计算公式如下：CAA（unit）=1−（∫SA/∫CA），

∫SA：样品时间-荧光值曲线下的积分面积；∫CA：对照

时间-荧光值曲线下的积分面积；EC50 根据 lg（fa/fu）/
lg（dose）的中效原理计算；fa：CAA unit；fu：1-CAA
unit。实验中每个样品做四个重复，实验空白组即加

入探针 DCFH-DA但不加 AAPH及抗氧化剂的荧光

衰减组；实验阳性对照为加自由基激发剂 AAPH和

探针 DCFH-DA的荧光衰减组，样品实验剂量对细

胞生长的抑制率在 10%以下进行。 

1.2.5   细胞内抗氧化酶活性实验　参照 Zhang等[21]

和 Shi等 [22] 取对数生长期的 HepG2细胞浓度为

106 个/mL，均匀铺于 6孔板内，培养 24 h后待其贴壁

生长后清除培养基；加入含 EGCG+异鼠李素组合的

基础培养基，1 h后，用 PBS清洗 1~2次；加入 1.5 mL
600 μmol/mL AAPH在 37 ℃，5% CO2 培养箱里孵

育 1.5~2 h；阳性对照组加入 AAPH不加抗氧化剂

（NC），阴性对照组不加 AAPH和抗氧化剂（PC）；然
后用 PBS清洗一次，用细胞刮刀刮下细胞，1000 r/min
离心 10 min后收集细胞，弃上清；再加 1 mL PBS离

心 10 min，弃上清；加入 IP裂解液（加 PMSF，100:

1，v/v）30~40 min（冰上操作），4 ℃ 下 18495 r/min
离心 10 min，取上清分装，−80 ℃ 下保存。按试剂盒

说明书进行操作，取适量先进行蛋白含量测定，然后

检测总 SOD、CAT和 GSH-Px的活性。 

1.3　数据处理

所有结果均以平均值±标准差（mean±SD）表

示。通过 SPSS软件对实验数据进行统计分析，采

用 ANOVA单因素进行统计学分析，并采用 Duncan
模块结合事后多重比较进行显著性分析，以 P<0.05
表示具有统计学显著差异，采用 Sigmaplot 10.0软件

进行绘图。 

2　结果与分析 

2.1　EGCG、异鼠李素以及 EGCG和异鼠李素组合的

细胞抗氧化活性

CAA法是一种从细胞水平反映抗氧化剂的吸收

和代谢的变化情况，更真实地模拟机体的正常生理状

态[23]。CAA法中荧光探针 DCFH-DA本身没有荧

光，但可以自由穿过细胞膜，进入细胞内后会被细胞

内相应的蛋白酯酶水解生成 DCFH，此时细胞内的

活性氧通过氧化无荧光的 DCFH从而能变成有荧光

的 DCF，因此检测荧光值就能反映细胞内活性氧的

水平[24−25]。

采用 HepG2细胞抗氧化评价模型评价不同浓

度梯度下样品的细胞抗氧化活性。如图 1所示，

EGCG和异鼠李素的 EC50 值分别为 6.2±0.2和 3.8±
0.1 μg/mL，两者细胞抗氧化活性具有显著性差异

（P<0.05）。在联合作用实验中，为了每个单体化合物

具有相似的活性，确定每个单体化合物的（EC50）1/
（EC50）2 为组合物的质量浓度比。并以（EC50）1/
（EC50）2 比例为参照，调整各个单体化合物质量浓度

比例，确定组合物的质量浓度比分别为 6:4、6:5、
7:4。因此，以 EGCG组（7  μg/mL）、异鼠李素组

（5 μg/mL）、组合 1（6+4 μg/mL）、组合 2（6+5 μg/mL）
和组合 3（7+4 μg/mL）为各样品细胞抗氧化实验作用

浓度。结果显示，EGCG和异鼠李素组合的 EC50 值

分别为 5.0±0.2、5.25±0.2和 5.50±0.2  μg/mL，组合

1的活性优于其他组合活性。EGCG+异鼠李素组合

的 EC50 值分别是 EGCG组的 0.81倍、0.85倍和

0.89倍，表明 EGCG+异鼠李素组合抗氧化活性显著

高于 EGCG组（P<0.05）。然而，EGCG+异鼠李素组

合的 EC50 值均高于异鼠李素组，表明组合物的抗氧

化活性显著弱于异鼠李素组（P<0.05）。
 
 

7 a

d

bc b b

EC
50

 (μ
g/

m
L)

6

5

4

3

2

1

0

EGCG组

异
鼠
李
素
组

组
合

1
组
合

2
组
合

3

图 1    EGCG组、异鼠李素组、EGCG+异鼠李素组合的
EC50 值

Fig.1    EC50 of EGCG, isorhamnetin, and EGCG+isorhamnetin
combinations

注：图中不同小写字母表示差异显著 P<0.05；图 2同。
 

综上所述，EGCG和异鼠李素组合可保护 HepG2
细胞免受 AAPH诱导的氧化损伤。其中，组合 1的
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细胞抗氧化活性较强。目前，依据不同活性成分相互

作用效果的不同将其相互作用关系分为：协同增效作

用、拮抗作用和简单加和作用。从生物学角度来看，

细胞摄取量对活性成分的生物可及性和生物利用度

造成一定影响，并影响其最终在体内抗氧化作用的发

挥。Chen等[26] 研究表明，黄酮类化合物（槲皮素、木

犀草素）和类胡萝卜素（番茄红素、叶黄素）在总浓度

为 8 μmol/mL的不同比例下结合，番茄红素:槲皮

素=1:5复配组作用后，促进了番茄红素的细胞从而

增强了其细胞抗氧化活性。Phan等[27] 研究发现，花

青素和 β-类胡萝卜素联合作用 Caco2细胞时，增加

了 β-类胡萝卜素的细胞吸收，但对其细胞抗氧化活

性产生了拮抗作用，可能与 β-类胡萝卜素和花青素

共同作用时，β-类胡萝卜素细胞浓度达到一定水平时

表现出促氧化作用有关。因此，活性成分的摄取量可

能是影响其细胞抗氧化活性的关键因素，也是未来研

究方向中需要特别关注的内容。 

2.2　EGCG和异鼠李素组合对 HepG2细胞存活率的

影响

利用 CCK-8法，对 EGCG、异鼠李素以及 EGCG

和异鼠李素组合在不同浓度梯度处理 HepG2细胞

24 h，进行细胞毒性分析。由 2.1中可知 EGCG和异

鼠李素的 EC50 分别为 6.2±0.2和 3.8±0.1 μg/mL，在

联合作用实验中，以单体化合物的（EC50）1/（EC50）2
为组合的质量浓度比参照，并上下调整质量浓度比

例，确定组合物的质量浓度比分别为 6:4、6:4、7:4。

因此，以 EGCG组（7 μg/mL）、异鼠李素组（5 μg/mL）、

组合 1（6+4  μg/mL）、组合 2（6+5  μg/mL）和组合

3（7+4 μg/mL）为各样品 CCK-8实验作用浓度。结

果如图 2所示，经不同质量浓度的 EGCG、异鼠李素

以及不同质量浓度比的 EGCG和异鼠李素组合处

理 24 h后，细胞存活率均在 90%以上，该浓度下各

样品符合后续细胞抗氧化实验细胞毒性要求。EGCG

和异鼠李素在不同浓度下，其细胞存活率存在显著性

差异（P<0.05）；而 EGCG和异鼠李素组合（6:4，6:5，

7:4，c/c）三者之间的细胞存活率无明显差异（P>
0.05）。结果表明，本实验中各处理组所使用样品浓

度，对 HepG2细胞无明显毒副作用。 

2.3　EGCG和异鼠李素组合联合指数 CI
Chou和 Talalay引入了联合指数（CI）方法，将

药物联合效应定量描述为协同效应（CI<1）、加和效

应（CI=1）或拮抗效应（CI>1）。随着 Chou-Talalay理

论的发展，CompuSyn软件被开发出来，用于剂量效

应分析、CI计算和 Fa-CI图模拟 [28]。本研究采用

Chou-Talalay联合指数法，考察 EGCG与异鼠李素

联合作用是否具有协同作用。在联合作用试验中，

以 EGCG和异鼠李素的 EC50 值为指导选择单个浓

度。CI值由 CompuSyn软件计算。EGCG和异鼠

李素在 50%、75%和 90%抗氧化效果下（GI50、GI75
和 GI90）的 CI值见表 1。
 
 

表 1    EGCG和异鼠李素组合的 CI值
Table 1    CI value of EGCG+isorhamnetin

化合物 质量比
CI

CIavgGI50 GI75 GI90

EGCG和异鼠李素

7:4
6:4
6:5

1.02±0.01
0.82±0.02
1.01±0.01

1.00±0.01
0.78±0.02
0.96±0.02

0.99±0.01
0.74±0.01
0.92±0.01

1.00
0.76
0.95

注：数据源自三次独立实验的结果，表示为“平均值±标准差”。GI50、GI75
和GI90分别化合物抗氧化效应达到50%、75%和90%的CI值。CIavg=
（CI50+2CI75+3CI90）/6。
 

如图 3所示，随着浓度的增加各单体及 EGCG
和异鼠李素组合细胞抗氧化活性也随之增加，呈剂

量-效应关系。图 3A~图 3C中，浓度在 0~5 μg/mL
时，异鼠李素组的 CAA值最高，为 53.5%±2.7%，与

EGCG组和组合的 CAA值具有显著性差异（P<0.05）；
浓度在 10 μg/mL时，组合的 CAA值此时最高，分别

为 65.6%±2.3%、70.1±2.5%和 68.2±2.2%，且与浓度

为 5 μg/mL时的 EGCG组（51.6%±1.7%）和异鼠李

素组（53.5%±2.7%）的活性存在显著性差异（P<
0.05）。结果表明，EGCG+异鼠李素组合可能具有协

同作用。

依据图 3中各单体及组合在相应浓度下的 CAA
值，经过 CompuSyn软件计算，得到 EGCG和异鼠

李素组合的 CI值，结果如表 1所示。表 1是利用联

合指数法计算出各不同浓度 EGCG和异鼠李素组合

联用时的平均 CI值，从表 1可以看出 EGCG和异鼠

李素联合作用时，在浓度比为 6:4和 6:5时，具有协

同作用。EGCG和异鼠李素的联合使用，在两者的

浓度为 7:4时，其联合用药系数 CI约为 1，联合用药

指数均值（CIavg）为 1.00，表现出了叠加作用。在两

者的浓度比为 6:4时，其中，GI75 和 GI90 均小于 0.80，
说明两者在浓度为 6:4时表现出了较强的协同作

用，联合用药指数均值（CIavg）为 0.76。在两者的浓

度比为 6:5时，GI50 约为 1，GI75 和 GI90 小于 1，说
明两者在浓度为 6:5时表现出了较弱的协同作用，
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图 2    EGCG组、异鼠李素组、EGCG+异鼠李素组合对
HepG2细胞存活率的影响

Fig.2    Effects of EGCG group, isorhamnetin group, and
EGCG+isorhamnetin groups on the surviral rates of HepG2 cells
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联合用药指数均值（CIavg）为 0.95。图 4为 EGCG

和异鼠李素组合（6:4）在 CIavg 最小时的 Fa-CI趋势

图，随着 Fa值的增加，CI值呈降低趋势，即表明随着

细胞抗氧化活性的增加，EGCG和异鼠李素组合的

协同增效作用更佳。结果表明，在一定的浓度范围

内，EGCG和异鼠李素组合对 HepG2细胞具有协同

抗氧化保护作用。EGCG+异鼠李素（6:4）的 CI值为

最佳组合，因此选用 EGCG+异鼠李素（6:4）进行后

续实验。

于佳成[29] 发现，槲皮素与儿茶素（12.5 μmol/L+
12.5 μmol/L）的浓度组合对 H2O2 诱导 HepG2细胞

氧化损伤具有协同保护作用，其联合指数 CI值为

0.374，表明组合协同效果较好；进一步细胞内抗氧化

酶实验发现，二者联合处理后，SOD、CAT、GPx活

性和 MDA含量比单药处理显著性降低，说明槲皮素

和儿茶素组合在消除 ABAP诱导的 HepG2细胞氧

化应激酶活方面具有一定的协同增效作用。Saw
等[30] 也研究发现，低浓度下的槲皮素和山奈酚，槲皮

素和紫檀芪以及山奈酚和紫檀芪组合通过上调 Nrf2
通路上的 mRNA和蛋白的表达，增加了其清除自由

基（ROS）等能力，对 H2O2 诱导 HepG2-C8细胞氧化

损伤达到协同抗氧化保护效果。研究结果与本文结

果趋势一致，组合物对细胞都起到了协同保护作用。

然而，这些结果表明，每个组合的协同作用水平与单

个化合物的抗氧化作用无关，剂量效应关系并不能说

明其机制，它只显示了质量作用律参数[31]。基于以上

结果，EGCG与异鼠李素联用潜在的协同作用机制

有待进一步探讨。 

2.4　细胞内抗氧化相关酶活性

ROS的过量产生导致细胞内氧化应激失衡，从

而可能导致细胞损伤，是导致慢性疾病的主要因素，

包括衰老、心血管病、高血压和神经退行性疾病[32]。

AAPH诱导 ROS生成可引起细胞内抗氧化防御系

统失衡，SOD、CAT和 GSH-Px是清除自由基的主

要酶。抗氧化酶系统对氧化应激损伤起着重要的防

御作用。为了评估抗氧化酶系统是否在 HepG2细

胞中发挥作用，检测了抗氧化酶（SOD、CAT和

GSH-Px）的活性，这些酶在人体氧化应激平衡中起着

重要作用[33]。因此，细胞内抗氧化酶活性的变化可以

反映 HepG2细胞抑制活性氧（ROS）的能力。

为了进一步阐明 EGCG与异鼠李素（6:4）联合

抗氧化的作用机制，对 SOD、GSH-Px和 CAT的活

性进行了测定。结果如表 2所示，与 PC细胞相比，

NC细胞在 600 μmol/mL AAPH作用 1 h后，SOD、

CAT和 GSH-Px活性分别显著降低 51.2%、53.5%
和 57.1%，表明 AAPH对 HepG2细胞产生了氧化损

伤。而当 EGCG和异鼠李素组合提前孵育 1 h后，

结果发现 HepG2细胞内 SOD、CAT和 GSH-Px相

比于 NC均有上升且随剂量增加而增强加。如表 2
结果，与 NC细胞相比，EGCG和异鼠李素组合在浓

度 1.5+1  μg/mL作用细胞时，SOD无显著性差异

（P>0.05），然而在 3+2 μg/mL和 6+4 μg/mL时，具有

显著性差异（P<0.05），且 CAT和 GSH-Px的活性与

SOD相似。相比于 NC细胞，EGCG和异鼠李素组

合作用与HepG2细胞，其 SOD活性分别增加了 5.2%、

21.1%和 49.1%；GSH-Px的活性分别增加了 7.6%、
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图 3    EGCG（7 μg/mL）、异鼠李素（5 μg/mL）、EGCG+异鼠李
素组合的 CAA值

Fig.3    CAA of EGCG (7 μg/mL), isorhamnetin (5 μg/mL)
and EGCG+isorhamnetin
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Fig.4    Fa-CI plot of EGCG+isorhamnetin (6:4)
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27.8%和 57.6%；CAT活性分别增加了 5.6%、24.6%
和 42.1%。结果与 CAA测定结果一致。组合具有

较好的细胞抗氧化活性，抗氧化酶活性也较高。
  
表 2    EGCG和异鼠李素组合（6:4）对 HepG2细胞抗氧化

相关酶的活性的影响
Table 2    Effects of EGCG+isorhamnetin (6:4) on activities of

antioxidant enzymes in HepG2 cells

化合物
（μg/mL）

SOD
（U/mg protein）

GSH-Px
（mU/mg protein）

CAT
（U/mg protein）

PC 29.3±2.2a 310.5±5.4a 61.3±3.1a

NC 14.3±1.1d 133.3±2.3d 28.5±2.2d

1.5+1 14.9±0.1d 143.4±4.1d 30.1±1.2d

3+2 17.2±0.08c 170.3±3.7c 35.5±2.4c

6+4 21.2±0.1b 210.1±4.8b 40.4±2.5b

注：数据源自三次独立实验的结果，表示为平均值±标准差；不同字母代
表显著性差异P<0.05。
 

综上所述，EGCG与异鼠李素（6:4）组合可通过

调节抗氧化酶活性抑制 AAPH诱导的 HepG2细胞

氧化应激。同时，高浓度组合在样品组中 SOD、

CAT和 GSH-Px的活性最好。结果表明，适当浓度

的组合表现出更好的抗氧化酶活性，说明较高的酶活

性是细胞抗氧化协同作用的机制。Wen等[34] 发现荔

枝叶肉桂素 B1通过上调 SOD、CAT和 GSH-Px活

性，可抑制较强的细胞内抗氧化活性。Jiang等[35] 报

道 Jiupei肽具有良好的细胞抗氧化活性，SOD、CAT
和 GSH-Px活性呈剂量依赖性增加。Zhou等[36] 研

究发现，马氏螯虾肉中的抗氧化肽可显著提高 HepG2
细胞谷胱甘肽（GSH）和过氧化氢酶（CAT）的产生，以

及 Nrf2信号通路相关基因的表达。同样，Huo等[37]

也报道了白酒中的抗氧化肽通过清除活性氧（ROS）
和上调细胞抗氧化酶（SOD、CAT和 GSH-Px）活性

发挥保护作用。如图 5所示，EGCG和异鼠李素组

合可以穿过细胞膜，增加 SOD、CAT和 GSH-Px的

活性，共同清除活性氧（reactive  oxidative  species，
ROS）。结果表明，EGCG和异鼠李素联合作用主要

提高了 HepG2细胞的抗氧化酶活性。因此，EGCG
与异鼠李素联用的协同机制为：上调较高的 SOD、

CAT和 GSH-Px活性，来抑制 ROS的产生，从而达

到平衡机体氧化应激反应的效果，为食源性类黄酮功

能性食品的开发提供理论依据。 

3　结论
综上所述，EGCG和异鼠李素组合联合应用对

HepG2细胞的协同增效保护作用，与单独使用 EGCG
或异鼠李素相比，联合作用通过上调细胞内抗氧化相

关酶活性更大程度地清除 HepG2细胞内的 ROS。
但本研究仍有许多不足之处：本研究仅限于体外单一

细胞系，在后续的研究中可在多种细胞系中进行验

证，在条件允许下可进一步在动物实验或临床实践中

进一步验证；EGCG和异鼠李素联合应用在体内的

毒性研究需要进一步验证；后续研究中可在分子水平

上进一步阐释 EGCG和异鼠李素的细胞抗氧化协同

作用的分子机制。本研究虽存在这些局限，但初步结

果表明，EGCG和异鼠李素联合应用可能是一种潜

在的抗氧化剂的候选组合，并为其后续功能性产品的

开发奠定了理论基础。
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图 5    EGCG和异鼠李素组合在 HepG2细胞内协同抗氧化作
用机制示意图

Fig.5    Possible mechanisms of EGCG+isorhamnetin
combination antioxidant activities in HepG2 cells
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